全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

内蒙古草原不同植物种群土壤化学元素特征

DOI: 10.3321/j.issn:1000-7091.2005.06.025, PP. 97-102

Keywords: 内蒙古草原,植物种群,土壤,化学元素

Full-Text   Cite this paper   Add to My Lib

Abstract:

对内蒙古温带典型草原冷蒿(Artemisiafrigida)、星毛委陵菜(Potentillaacaulis)、羊草(Leymuschinensis)、木地肤(Kochiaprostrata)和小叶锦鸡儿(Caraganamicrophylla)种群土壤无机氮、微生物量氮、全氮、有机碳、净氮矿化速率和pH等特性进行了系统研究。结果表明,不同植物种群土壤pH值和全N含量3个取样期均以羊草最高,其次为星毛委陵菜,小叶锦鸡儿种群最低。除冷蒿与木地肤种群间外,其他种群间土壤pH值和全N含量均达到显著性差异(P<0.05)。羊草种群土壤无机N含量最高,其次依次为冷蒿种群、小叶锦鸡儿种群、木地肤种群和星毛委陵菜种群。各植物种群间土壤无机N含量均达到了显著性差异(P<0.05)。不同植物种群土壤微生物量氮(MBN)3个取样期均以小叶锦鸡儿最高,其次依次为羊草种群、冷蒿种群、木地肤种群和星毛委陵菜种群,各种群间差异显著(P<0.05)。3个培养期均以羊草种群土壤净氮矿化速率最高,其次依次为冷蒿、星毛委陵菜、木地肤和小叶锦鸡儿,各种群间均达到了显著差异(P<0.05)。土壤净氮矿化速率与植物种群土壤pH、温度和C:N分别存在显著的正相关和负相关关系(P<0.05)。3个取样期土壤有机碳含量均以小叶锦鸡儿种群最高,其次为羊草种群,星毛委陵菜种群最低。除冷蒿种群与木地肤种群间土壤有机碳含量差异不显著(P>0.05)外,其他各植物种群间土壤有机碳含量均达到了显著性差异(P<0.05)。这些变化特征说明,随着草地退化和灌丛化,土壤养分呈降低趋势,尤其是有效养分变化更加明显。

References

[1]  Agustin R,Adrian E.Small-scale spatial soil-plant relationship in semi-arid gypsum environments [J].Plant and Soil,2000,220:139-150.
[2]  Belsky A J.Population and community processes in a mosaic grassland in the serengeti,Tanzania [J].Journal of Ecology,1986,74:841-856.
[3]  Berendse F.Effects of dominant plant species on soil during succession in nutrient poor ecosystems [J].Biogeochemistry,1998,42:73-88.
[4]  David T.The resource-ratio hypothesis of plant succession [J].The American Naturalist,1985,6:827-852.
[5]  Finzi A C,breemen N,Canham C D.Canopy tree-soil interactions within temperate forests:Species effects on soil carbon and nitrogen[J].Ecological Applications,1998,8:440-446.
[6]  Hook P B,Burke I C,Lauenroth W K.Heterogeneity of soil and plant N and C associated with individual plants and openings in North American shortgrass steppe[J].Plant and Soil,1991,138:247-256.
[7]  刘忠宽,汪诗平,韩建国,等.内蒙古温带典型草原植物凋落物和根系的分解及养分动态的研究[J].草业学报,2004,15(7):1294-1296.
[8]  James L C,Neil E W.Plant-induced soil chemical patterns in some shrub-dominated semi-desert ecosystems of Utah [J].Journal of Ecology,1975,6:945-962.
[9]  Janssens F,Peeters A,Bakker J P,et al.Relationship between soil chemical factors and grassland diversity[J].Plant and Soil,1998,202:69-78.
[10]  Jian C,John M S.Plant species effects and carbon and nitrogen cycling in a sagebrush-crested wheatgrass soil[J].Soil Biology & Biochemitry,2000,32:47-57.
[11]  Kelly R B,Burke I C.Heterogeneity of soil organic matterfollowing death of individual plants in shortgrass steppe [J].Ecology,1997,78(4):1256-1261.
[12]  Mary A V.Interactions between individual plants and soil nutrient status in shortgrass steppe [J].Ecology,1995,4:1116-1133.
[13]  Paul B H,Inrid C B,William K L.Heterogeneity of soil and plant N and C associated with individual plants and openings in North American shortgrass steppe [J].Plant and Soil,1991,138:247-256.
[14]  Rachhpal-Singh,Nye P H.A model of ammonia volatilization from applied urea.Ⅲ.Sentivity analysis,mechanisms and applications [J].Journal of Soil Science,1986b,37:31-40.
[15]  Van der Molen J,Bussink D W.Ammonia volatilization from arable and grassland soils.In:Hansen J A,Henriksen K.Nitrogen in Organic Wastes Applied to soils [M].London:Academic Press,1989.185-201.
[16]  Vinton M A,Burke I C.Interactions between individual plant species and soil nutrient status in shortgrass steppe [J].Ecology,1995,76:1116-1133.
[17]  Wedin D A,Tilman D.Species effects on nitrogen cycling:a test with perennial grasses [J].Oecologia,1990,84:433-441.
[18]  刘忠宽,汪诗平,韩建国,等.内蒙古草原放牧恢复过程地衣生物量分布及其影响因素的研究[J].应用生态学报,2004,15(7):1294-1296.
[19]  Carolyn H,Daniel U.Plant-soil relationships on bentonite mine spoils and sagebrush grassland in the Northern High Plains[J].Journal of Range Management,1983,38 (3):289-293.
[20]  Carroll J A,Caporn S J M,Johnson D,et al.The interactions between plant growth,vegetation structure and soil processes in semi-natural acidic and calcareous grasslands receiving long-term inputs of simulated pollutant nitrogen deposition [J].Environmental Pollution,2003,121:363-376.
[21]  Charley J L,West N E.Plant-induced soil chemical patterns in some shrub-dominated semidesert ecosystems of Utah [J].Journal of Ecology,1975,63:945-963.
[22]  Chen J,Stark J M.Plant species effects and carbon and nitrogen cycling in sagebrush crested wheatgrass soil[J].Soil Biology & Biochemistry,2000,32:47-57.
[23]  David T,David W.Plant traits and resource reduction for live grasses growth on a nitrogen gradient[J].Ecology,1991,2:685-700.
[24]  Garner W,Steinberger Y.A proposed mechanism for the formation of "Fertile Island" in the desert ecosystem [J].Journal of Arid Environments,1989,16:257-262.
[25]  Grime J P.Plant strategies and vegetation process[M].New York:John Wiley & Sons,Ltd,1979.
[26]  Gross K L,Pregitzer K S,Burton A J.Spatial variation in nitrogen availability in three successional plant communities [J].Journal of Ecology,1995,83:357-367.
[27]  Hassink J,Neutel A M C.N mineralization in sandy and loamy grassland soils:the role of microbes and microfauna [J].Soil Biology and Biochemistry,1994,26:1565-1571.
[28]  Hobbie S E.Effects of plant species on nutrient cycling [J].Trends in Ecology and Evolution,1992,7:336-339.
[29]  Howard E E,Ingrid C B,Arvin R M.Plant effects on spatial and temporal patterns of nitrogen cycling in shortgrass steppe [J].Ecosystems,1998,1:373-385.
[30]  Imhoff S,Pires A,Tormena C A.Spatial heterogeneity of soil properties in areas under elephant-grass short-duration garzing system[J].Plant and Soil,2000,219:161-168.
[31]  Jackson R B,Caldwell M M.The scale of nutrient heterogeneity around individual plants and its quantification with geostatistics[J].Ecology,1993a,74:612-614.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133