全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高光强下转玉米PEPC基因水稻和未转基因水稻秧苗叶片超微结构的比较

DOI: 10.7668/hbnxb.2007.04.023, PP. 99-103

Keywords: 转玉米PEPC基因水稻,类囊体片层,叶肉细胞,超微结构

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了阐明转玉米PEPC基因水稻高光效的结构基础,以转玉米PEPC基因水稻和未转基因原种为试验材料,在水稻的三叶期,施以100min,1000μmol/(m2·s)的高光强处理,以200μmol/(m2·s)下的水稻为对照,运用透射电镜观察叶肉细胞、维管束鞘以及叶绿体内类囊体片层结构。结果发现,与对照材料相比,转玉米PEPC基因水稻材料经高光强处理后,叶片叶绿体的排列更加紧密,叶绿体中类囊体片层堆垛整齐,有序片层较厚,排列更加致密,类囊体结构更加完整,而且叶绿体周围的线粒体数量明显增多;而未转基因原种的叶片经高光强处理后,叶绿体内类囊体片层松散,结构混乱,部分甚至解体,表现出受到损伤的迹象,叶绿体基质中淀粉大颗粒的含量明显增多。转玉米PEPC基因水稻叶片光合器官在高光强下结构稳定以及线粒体的有序排列有利于其利用较高的光能,从而提高其光合生产力,为阐明转C4光合基因水稻高光效的理论提供了证据。

References

[1]  Ku M S B, Kano-Murakami Y, Matsuoka M. Evolution and expression of C4 photosynthesis genes[J]. Plant Physiol, 1996, 111: 949-957.
[2]  Matsuoka M, Fukayama H, Tsuchida H, et al. How to express some C4 photosynthesis genes at high levels in rice[M]//Sheehy J E, Mitchell P L, Hardy B. Redesigning Rice Photosynthesis to Increase Yield. Phillipa: Elsevier Science, 2000: 167-175.
[3]  王德正, 王守海, 吴爽, 等. 玉米PEPC基因在杂交转育的转基因水稻哦后代传递和表达特征[J]. 遗传学报, 2004, 31: 195-201.
[4]  袁莉民, 仇明, 王朋, 等. C4转基因水稻秧苗叶片气孔与叶鞘维管束结构特征[J]. 中国农业科学, 2006, 39: 902-909.
[5]  Aoyagi K, Bassham J A. Appearance and acculation of C4 carbon pathway enzymes in developing wheat leaves[J]. Plant Physiol, 1986, 80: 334-340.
[6]  焦德茂, 李霞, 黄雪清, 等. 转PEPC基因水稻的光合CO2同化和叶绿素荧光特性[J]. 科学通报, 2001, 46: 414-418.
[7]  Shinchi Sawada, Takeshi Sakamoto, Makiko Sato, et al. Phootosynthesis with Single-RootedAmaranthus Leaves Ⅱ Regulation of Ribuelose-1, 5-Bisphosphate Carboxylase, Phophoenolpyruvate Carboxylase, NAD-Malic Enzyme and MAD-Malate Dehydrogenase and Coordination between PCR and C4 Photosynthetic Metabolism in Response to Changes in the Source-sink Balance[J]. Plant Cell Physiol, 2002, 43: 1293-1301.
[8]  Black C C Jr. Photosynthetic carbon fixation in relation to net CO2 uptake[J]. Annu Rev of plant Physiol, 1973, 24: 253-286.
[9]  Brown R H, Bouton J H. Physiology and genetics of interspecific hybrids between photosynthetic types[J]. Annu Rev Plant Physiol Plant Mol Biol, 1993, 44: 435-456.
[10]  Matsuoka M, Furbank R T, Fukayama H, et al. Molecular engineering of C4 photosynthesis[J]. Annu Rev Plant Physiol Plant Mol Biol, 2001, 52: 297-314.
[11]  Ku M S B, Sakae A, Mika N. High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants[J]. Nature Biotechnology, 1999, 17: 76-80.
[12]  焦德茂, 匡廷云, 李霞, 等. 转PEPC基因水稻的具有初级CO2浓缩机制的生理特点[J]. 中国科学(C辑), 2003, 33: 33-39.
[13]  Takeuchi Y, Akagi H, Kamasawa N, et al. Aberrant chloroplasts in tnsgenic rice plants expression a high level of maize NADP-dependent malic ezyme[J]. Planta, 2000, 211: 265-274.
[14]  潘瑞炽. 植物生理学[M]. 第4版. 北京: 高等教育出版社, 2001.
[15]  Magnin N C, Cooley B A, Reiskind J B, et al. Regulation and localization of key enzymes during the induction of Kranz-less, C4 photosynthesis in Hydrilla verticillate[J]. Plant. Physiol, 1997, 115: 1681-1689.
[16]  王仁雷, 华春, 李霞, 等. 光抑制条件下转PEPC基因水稻的光合表现[J]. 作物学报, 2002, 28: 321-326

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133