全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

羊草根际固氮菌的分离及其生长条件的研究

DOI: 10.3321/j.issn:1000-7091.2007.01.041, PP. 172-177

Keywords: 固氮细菌,分离,形态学特征,生长条件

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了获得禾本科牧草羊草根际土壤固氮菌分布的基本情况及优势菌株,于羊草生长旺盛季节,在内蒙古锡林郭勒天然草地的羊草根际土壤、原土体以及羊草根内进行了固氮细菌的分离,并统计了数量分布。通过分离和筛选共获得14个固氮菌株,这些固氮菌的分布表现为离根系越近,土壤中固氮菌的数量越多。从14个固氮菌株中筛选出4个固氮能力相对较强的菌株,对其进行了形态观察以及碳源、pH值、温度等生长条件的研究,结果表明,在供试的碳源中,4个菌株能很好地利用蔗糖和葡萄糖,但不能利用纤维素;适宜生长的pH范围为7~8;适宜生长的温度范围为25~35℃,其中分离自原土体土壤的2个菌株耐受温度变化的能力相对较强。

References

[1]  新楠, 连秀芬, 樊明寿. 非共生生物固氮的主要作用和研究进展[J]. 内蒙农业科技, 2005, (2): 18-19.
[2]  Peoples M B, Craswell E T. Biological nitrogen fixation investments, expectations and actual contributions to agriculture[J]. Developments in Plant and Soil Sciences, 1992, 49: 13-39.
[3]  Kennedy I R and Islam N. The current and potential contribution of asymbiotic nitrogen fixation to nitrogen requirements on farms[J]. Australian Journal of Experimental Agriculture, 2001, 41, 447-457.
[4]  辉民, 王澜芳, 蒋家慧, 等. 碳水化合物和H2对Gun-nera/Nostoc共生体固氮活力的影响[J]. 华北农学报, 1994, 9(4): 1-6.
[5]  Ladha J K & Reddy P M. Nitrogen fixation in rice systems: state of knowledge and future prospects[J] Plant & Soi12003, 252: 151-167.
[6]  Liengen T. Conversion factor between acetylene reduction and nitrogen fixation in free-living cyanobacteria from high arctic habitats[J]. Canadian Journal of Microbiology, 1999, 45 (3): 223-229.
[7]  Liengen T Nitrogen fixation by free-living cyanobacteria from different coastal sites in a high arctic tundra, Spitsbergen[J]. Arctic and Alpine Research, 1997, 29 (4): 412-418.
[8]  刘书润, 刘钟龄. 内蒙古锡林河流域植物区系纲要——草原生态系统研究[M]. 北京: 科学出版社, 1988. 3: 227-233.
[9]  Okon Y & Kapalink Y. Development and function of Azospirillum-inoculated roots[J]. Plant & Soil, 1986, 90: 3-16.
[10]  方萍, 张丽梅, 贾小明, 等. 固氮螺菌(Azospirillumbrasilense)No40在红壤性水稻上的接种效应[J]. 浙江大学学报, 2001, 27(1): 33-36.
[11]  Bohlool B B, Ladha J K, Garrity D P. Biological nitrogen fixation for sustainable agriculture: a perspective[J]. Developments in Plant and Soil Sciences, 1992, 49: 1-11.
[12]  Kennedy I R, Tchan Y T. Biological nitrogen fixation in nonleguminous field crops: recent advances[J]. Developments in Plant and Soil Sciences, 1992, 49: 93-118.
[13]  Marschner H. Mineral Nutrition of Higher Plants[M], 2nd edition, Academic Press, London. 1995, 566.
[14]  张丽梅, 方萍, 朱日清. 禾本科植物来年和固氮研究及其应用现状展望[J]. 应用生态学报, 2004, 15(9): 1650-1654.
[15]  Robert M B, Segundo U, Bruno J R, Veronica R. Endophytic nitrogen fixation in sugarcane: present knowledge and future applications[J]. Plant & Soil, 2003, 252: 139-149.
[16]  Zaady E, Groffman P, Shachak M. Nitrogen fixation in macro-and microphytic patches in the Negev Desert[J]. Soil Biology & Biochemistry, 1998, 30 (4): 449-454.
[17]  沈世华, 荆玉祥. 中国生物固氮研究现状和展望[J]. 科学通报, 2003, 48(6): 535-540.
[18]  季良, 朱树秀, 阿米娜. 玉米大豆混作系统氮素转移特性的研究[J]. 华北农学报, 1996, 11(2)56-61.
[19]  许建平, 倪礼斌, 时燕. 水稻应用耐铵型联合固氮菌的效果[J]. 上海农业科学, 2002, 17(3): 52-56.
[20]  尤崇杓, 方宣钧. 水稻根际固氮粪产碱菌的研究[J]. 农业生物技术学报, 1995, 3(1): 14-20.
[21]  Boddey R M, Oliveira O C, Urquiaga S. Biological nitrogen fixation associated with sugarcane and rice: Contributions and prospects for improvement[J]. Plant & Soil, 1995, 174: 195-209.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133