全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

宽窄行种植方式对玉米光截获和辐射利用效率的影响

DOI: 10.7668/hbnxb.2011.06.023, PP. 118-123

Keywords: 玉米,种植方式,光截获,辐射利用效率

Full-Text   Cite this paper   Add to My Lib

Abstract:

种植方式影响玉米对光的截获和辐射利用效率进程。在本研究中,采用如下两种种植模式:宽窄行KZ:30+170和匀垄CK65,密度均为6.4株/m2。测量了玉米生长发育阶段的生理机能,对比了不同种植模式下玉米的光截获分数(F)、叶面积指数(LAI)、消光系数(K)、辐射利用效率(RUE),两种模式中,K值呈现出KZ>CK的特征;F值在KZ中显著低于CK,而两种种植方式间叶面积指数没有显著的差异;两种方式的RUE表现为KZ>CK。结果表明,尽管宽窄行种植截获了较少的有效辐射,但冠层中的光环境得到改善,辐射利用效率有明显的提升。

References

[1]  Bullock D G,Nielsen R L,Nyquist W E. A growth analysis comparison of corn grown in conventional and equidistant plant spacing [J]. Crop Science,1988,28: 254- 258.
[2]  Flenet F,Kiniry J R,Board J E, et al. Row spacing effects on light extinction coefficients of corn, sorghum, soybean, and sunflower [J]. Agronomy Journal,1996,88: 185- 190.
[3]  Farnham D E. Row spacing,plant density,and hybrid effects on corn grain yield and moisture [J]. Agronomy- Journal, 2001, 93: 1049-1053.
[4]  Ottman M J,Welch L F. Planting patterns and radiation interception,plant nutrient concentration,and yield in corn [J]. Agronomy Journal, 1989, 81: 167-174.
[5]  Widdicombe W D,Thelen K D. Row width and plant density effects on corn grain production in the northern corn belt [J]. Agronomy Journal, 2002, 94: 1020-1023.
[6]  Maddonni G,Chelle M,Drouet J L, et al. Light interception of contrasting azimuth canopies under square and rectangular plant spatial distributions: Simulations and crop measurements [J]. Field Crop Res, 2001, 70: 1-13.
[7]  Andrade F H,Calvino P,Cirilo A, et al. Yield responses to narrow rows depend on increased radiation interception[J]. Agronomy Journal, 2002, 94: 975-980.
[8]  Forcella F,Westgate M E,Warnes D D. Effect of row width on herbicide and cultivation requirements in row crops [J]. American Journal of Alternative Agriculture, 1992,7 : 161-167.
[9]  Westgate M E,Forcella F,Reicosky D C, et al. Rapid canopy closure for maize production in the northern us corn belt: Radiation-use efficiency and grain yield[J]. Field Crop Res, 1997, 49: 249-258.
[10]  Gallo K P,Daughtry C S T. Techniques for measuring intercepted and absorbed photosynthetically active radiation in corn canopies [J]. Agronomy Journal, 1986, 78: 752-756.
[11]  Monsi M,Saeki T. On the factor light in plant communities and its importance for matter production [J]. Annals of Botany, 2005, 95: 549-567.
[12]  Plenet D,Mollier A,Pellerin S. Growth analysis of maize field crops under phosphorus deficiency. Ii. Radiationuse efficiency,biomass accumulation and yield components[J]. Plant Soil, 2000, 224: 259-272.
[13]  Monteith J L. Solar-radiation and productivity in tropical ecosystems [J]. Journal of Applied Ecology,1972,9: 747-766.
[14]  Reta-Sanchez D G,Fowler J L. Canopy light environment and yield of narrow-row cotton as affected by canopy architecture[J]. Agronomy Journal,2002,94: 1317- 1323.
[15]  Sharratt B S,McWilliams D A. Microclimatic and rooting characteristics of narrow-row versus conventional-row corn [J]. Agronomy Journal, 2005, 97: 1129-1135.
[16]  Taylor H M,Mason W K,Bennie A T P, et al. Responses of soybeans to two row spacings and two soil water levels. I. An analysis of biomass accumulation,canopy development, solar radiation interception and components of seed yield [J]. Field Crop Res, 1982,5 : 1-14.
[17]  Maddonni G A,Cirilo A G,Otegui M E. Row width and maize grain yield [J]. Agronomy Journal, 2006, 98: 1532 -1543.
[18]  Stewart D W,Costa C,Dwyer L M, et al. Canopy structure, light interception, and photosynthesis in maize [J]. Agronomy Journal, 2003, 95: 1465-1474.
[19]  Olesen J E,Jorgensen L N,Mortensen J V. Irrigation strategy,nitrogen application and fungicide control in winter wheat on a sandy soil. Ii. Radiation interception and conversion [J]. Journal of Agricultural Science, 2000, 134: 13-23.
[20]  Kiniry J R,Bean B,Xie Y, et al. Maize yield potential: Critical processes and simulation modeling in a highyielding environment [J]. Agr Syst, 2004, 82: 45-56.
[21]  Rosati A,Badeck F W,Dejong T M. Estimating canopy light interception and absorption using leaf mass per unit leaf area in solanum melongena [J]. Annals of Botany, 2001, 88: 101-109.
[22]  Terashima I,Miyazawa S I,Hanba Y T. Why are sun leaves thicker than shade leaves? Consideration based on analyses of co2 diffusion in the leaf [J]. Journal of Plant Research, 2001, 114: 93-105.
[23]  Oguchi R,Hikosaka K,Hirose T. Does the photosynthetic light-acclimation need change in leaf anatomy? [J]. Plant Cell Environ, 2003, 26: 505-512.
[24]  Reich P B,Uhl C,Walters M B, et al. Leaf life-span as a determinant of leaf structure and function among 23 amazonian tree species [J]. Oecologia, 1991, 86: 16-24.
[25]  Wright I J,Cannon K. Relationships between leaf lifespan and structural defences in a low-nutrient, sclerophyll flora [J]. Functional Ecology, 2001, 15: 351-359.
[26]  Hikosaka K. Leaf canopy as a dynamic system: Ecophysiology and optimality in leaf turnover [J]. Annals of Botany, 2005, 95: 521-533.
[27]  Francescangeli N,Sangiacomo M A,Marti H. Effects of plant density in broccoli on yield and radiation use efficiency[J]. Scientia Horticulturae,2006,110: 135- 143.
[28]  Kemanian A R,Stockle C O,HugGins D R. Variability of barley radiation-use efficiency [J]. Crop Science, 2004, 44: 1662-1672.
[29]  Ruiz R A,Bertero H D. Light interception and radiation use efficiency in temperate quinoa(chenopodium quinoa willd.) cultivars [J]. Eur J Agron,2008,29: 144- 152.
[30]  Maddonni G A,Otegui M E,Cirilo A G. Plant population density, row spacing and hybrid effects on maize canopy architecture and light attenuation [J]. Field Crop Res, 2001, 71: 183-193.
[31]  Cirilo A G,Dardanelli J,Balzarini M,et al. Morphophysiological traits associated with maize crop adaptations to environments differing in nitrogen availability[J]. Field Crop Res, 2009, 113: 116-124.
[32]  Muchow R C. Comparative productivity of maize,sorghum and pearl-millet in a semi-arid tropical environment . 1. Yield potential [J]. Field Crop Res, 1989, 20: 191-205.
[33]  Andrade F H,Uhart S A,Cirilo A. Temperature affects radiation use efficiency in maize [J]. Field Crop Res, 1993, 32: 17-25.
[34]  Uhart S A,Andrade F H. Nitrogen defeciency in maize: I. Effects on crop growth,development,dry matter partitioning, and kernel set [J]. Crop Sci,1995,35: 1376- 1383.
[35]  Stoskopf N C. Understanding Crop Production[M]. Reston, Virginia: Reston Publishing company, 1981.
[36]  Wells R,Meredith W R,Williford J R. Canopy photosynthesis and its relationship to plant productivity in nearisogenic cotton lines differing in leaf morphology [J]. Plant Physiol, 1986, 82: 635-640.
[37]  齐华,粱熠,赵明,等. 栽培方式对玉米群体结构的调控效应[J]. 华北农学报,2010,25(3): 134-139.
[38]  吕丽华,王慧军,王璞. 不同施氮量下玉米产量形成的源库关系.[J]. 华北农学报, 2010, 25(2): 194-199.
[39]  田效瑞,张志力. 肥水调控对冬小麦冠层结构的效应[J]. 山西农业科学, 1993, 21(1): 35-39.
[40]  王秀萍,刘天学,董鹏飞,等. 高产玉米杂交种冠层结构与光能利用特征[J]. 河南农业科学,2010(4): 13-15.
[41]  Pommel B,Sohbi Y,Andrieu B. Use of virtual 3d maize canopies to assess the effect of plot heterogeneity on radiation interception [J]. Agricultural and Forest Meteorology, 2001, 110: 55-67.
[42]  Maddonni G A,Otegui M E. Leaf area, light interception, and crop development in maize [J]. Field Crop Res, 1996, 48: 81-87.
[43]  Shibles R M,Weber C R. Interception of solar radiation and dry matter production by various soybean planting patterns [J]. Crop Science, 1966,6 : 55-60.
[44]  Kiniry J R, Jones C A,Otoole J C, et al. Radiation-use efficiency in biomass accumulation prior to grain-filling for 5 grain-crop species [J]. Field Crop Res, 1989, 20: 51-64.
[45]  Gardner F P,Pearce R B,Mitcell R L. Physiology of crop plants: Ames: Iowa state university Press, 1985.
[46]  Wells R,Schulze L L,Ashley D A, et al. Cultivar differences in canopy apparent photosynthesis and their relationship to seed yield in soybeans [J]. Crop Science, 1982, 22: 886-890.
[47]  Matthews R B,Saffell R A,Campbell G S. An instrument to measure light-distribution in row crops [J]. Agricultural and Forest Meteorology, 1987, 39: 177-184.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133