全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

On Applicability of a Miniaturised Laser Ablation Time of Flight Mass Spectrometer for Trace Elements Measurements

DOI: 10.1155/2012/234949

Full-Text   Cite this paper   Add to My Lib

Abstract:

We present results from mass spectrometric analysis of NIST standard materials and meteoritic samples conducted by a miniaturised laser ablation mass spectrometer designed for space research. The mass analyser supports investigation with a mass resolution ( ) ≈ 500–600 and dynamic range within seven decades. Nevertheless, to maintain an optimal spectral quality laser irradiances lower than ~1?GW/cm2 are applied so far which results in a spread of RSC values. To achieve the quantitative performance of mass analyser, various effects influencing RSC factors have to be investigated. In this paper we investigate influence of laser irradiance, sampling procedure and plasma chemistry on the quantitative elemental and isotopic analysis. The studies indicate necessity for accurate control of laser characteristics and acquisition procedure. A relatively low irradiance applied causes a negligible sample damage and allows for accumulation of large number of waveforms from one sample location. The procedure yields statistically well averaged data and allows a sensitive in-depth analysis. The quantitative analyses of isotopic composition can be performed with accuracy and precision better as 1% and 2%, for isotopic patterns of elements and clusters, respectively. The numerical integration methods would be preferred to achieve more accurate results. The measurements of Allende sample yield detection of Pb isotopic pattern, nevertheless cluster species are readily observed in spectrum and make the elemental analysis of other trace elements difficult due to isobaric interferences. These detections are of a considerable interest because of possible application of the instrument for in situ elemental and isotopic analysis and radiometric dating of solids. 1. Introduction The elemental and isotopic composition of solid materials is a subject of considerable interest to various research fields and a wide range of quite different applications [1]. From the elemental composition, the bulk chemical composition of material can be inferred. Major and minor elements can be used for determination of the material structure and chemistry. Studies of elemental abundances of rocks or soils can provide, for instance, an insight to modal mineralogy [2]. Solid materials contain frequently a low abundant fraction of elements, trace, or ultratrace elements. Investigations of these elements, their distribution in the material, and their temporal abundance changes are subject of gradually increasing interest. Analysis of trace elements can be used for diagnostic of material purity, its

References

[1]  J. S. Becker, Inorganic Mass Spectrometry, John Wiley & Sons, 2007.
[2]  K. E. Jarvis and J. G. Williams, “Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS): a rapid technique for the direct, quantitative determination of major, trace and rare-earth elements in geological samples,” Chemical Geology, vol. 106, no. 3-4, pp. 251–262, 1993.
[3]  V. Hoffmann, M. Kasik, P. K. Robinson, and C. Venzago, “Glow discharge mass spectrometry,” Analytical and Bioanalytical Chemistry, vol. 381, no. 1, pp. 173–188, 2005.
[4]  C. J. Koester and A. Moulik, “Trends in environmental analysis,” Analytical Chemistry, vol. 77, no. 12, pp. 3737–3754, 2005.
[5]  R. Lobinski, C. Moulin, and R. Ortega, “Imaging and speciation of trace elements in biological environment,” Biochimie, vol. 88, no. 11, pp. 1591–1604, 2006.
[6]  P. Wurz, D. Abplanalp, M. Tulej et al., “In situ mass spectrometric analysis in planetary science,” Solar System Research. In press.
[7]  R. Rieder, T. Economou, H. W?nke et al., “The chemical composition of martian soil and rocks returned by the mobile alpha proton x-ray spectrometer: preliminary results from the x-ray mode,” Science, vol. 278, no. 5344, pp. 1771–1774, 1997.
[8]  H. Y. McSween Jr., R. L. McNutt Jr., and T. H. Prettyman, “Spacecraft instrument technology and cosmochemistry,” The Proceedings of the National Academy of Sciences of the United States of America, pp. 1–6, 2011.
[9]  L. A. McDonnell and R. M.A. Heeren, “Imaging mass spectrometry,” Mass Spectrometry Reviews, vol. 26, no. 4, pp. 606–643, 2007.
[10]  R. Huang, B. Zhang, D. Zou, W. Hang, J. He, and B. Huang, “Elemental imaging via laser ionization orthogonal time-of-flight mass spectrometry,” Analytical Chemistry, vol. 83, no. 3, pp. 1102–1107, 2011.
[11]  J. S. Becker and H. J. Dietze, “State-of-the-art in inorganic mass spectrometry for analysis of high-purity materials,” International Journal of Mass Spectrometry, vol. 228, no. 2-3, pp. 127–150, 2003.
[12]  L. Matus, H. M. Seufert, and K. P. Jochum, “Microanalysis of geological samples by laser plasma ionization mass spectrometry (LIMS),” Fresenius' Journal of Analytical Chemistry, vol. 350, no. 4-5, pp. 330–337, 1994.
[13]  U. Rohner, J. A. Whitby, and P. Wurz, “A miniature laser ablation time-of-flight mass spectrometer for in situ planetary exploration,” Measurement Science and Technology, vol. 14, no. 12, pp. 2159–2164, 2003.
[14]  U. Rohner, J. A. Whitby, P. Wurz, and S. Barabash, “Highly miniaturized laser ablation time-of-flight mass spectrometer for a planetary rover,” Review of Scientific Instruments, vol. 75, no. 5, pp. 1314–1322, 2004.
[15]  H. Balsiger, K. Altwegg, P. Bochsler et al., “Rosina—Rosetta orbiter spectrometer for ion and neutral analysis,” Space Science Reviews, vol. 128, no. 1–4, pp. 745–801, 2007.
[16]  D. Abplanalp, P. Wurz, L. Huber et al., “A neutral gas mass spectrometer to measure the chemical composition of the stratosphere,” Advances in Space Research, vol. 44, no. 7, pp. 870–878, 2009.
[17]  W. B. Brinckerhoff, G. G. Managadze, R. W. McEntire, A. F. Cheng, and W. J. Green, “Laser time-of-flight mass spectrometry for space,” Review of Scientific Instruments, vol. 71, no. 2 I, pp. 536–545, 2000.
[18]  G. G. Managadze and I. Y. Shutyaev, Chemical Analysis, vol. 124, John Wiley & Sons, New York, NY, USA, 1993.
[19]  L. M. Zelenyi and A. V. Zakharov, “Phobos-grunt project: devices for scientific studies,” Solar System Research, vol. 44, no. 5, pp. 359–361, 2010.
[20]  G. G. Managadze, P. Wurz, R. Z. Sagdeev et al., “Study of the main geochemical characteristics of phobos' regolith using laser time-of-flight mass spectrometry,” Solar System Research, vol. 44, no. 5, pp. 376–384, 2010.
[21]  Y. Lin, Q. Yu, W. Hang, and B. Huang, “Progress of laser ionization mass spectrometry for elemental analysis—a review of the past decade,” Spectrochimica Acta B, vol. 65, no. 11, pp. 871–883, 2010.
[22]  Q. Yu, L. Chen, R. Huang et al., “Laser ionization time-of-flight mass spectrometry for direct elemental analysis,” Trends in Analytical Chemistry, vol. 28, no. 10, pp. 1174–1185, 2009.
[23]  R. E. Honig and J. R. Woolston, “Laser-induced emission of electrons, ions, and neutral atoms from solid surfaces,” Applied Physics Letters, vol. 2, no. 7, pp. 138–139, 1963.
[24]  N. C. Fenner, “Ion energies in the plasma produced by a high power laser,” Physics Letters, vol. 22, no. 4, pp. 421–422, 1966.
[25]  M. Southon, M. Witt, A. Harris, E. Wallach, and J. Myatt, “Laser-microprobe mass-analysis of surface layers and bulk solids,” Vacuum, vol. 34, no. 10-11, pp. 903–909, 1984.
[26]  J. He, R. Huang, Q. Yu, Y. Lin, W. Hang, and B. Huang, “A small high-irradiance laser ionization time-of-flight mass spectrometer,” Journal of Mass Spectrometry, vol. 44, no. 5, pp. 780–785, 2009.
[27]  M. Tulej, M. Iakovleva, I. Leya, and P. Wurz, “A miniature mass analyser for in-situ elemental analysis of planetary material-performance studies,” Analytical and Bioanalytical Chemistry, vol. 399, no. 6, pp. 2185–2200, 2011.
[28]  S. Scherer, K. Altwegg, H. Balsiger et al., “A novel principle for an ion mirror design in time-of-flight mass spectrometry,” International Journal of Mass Spectrometry, vol. 251, no. 1, pp. 73–81, 2006.
[29]  X. Wang, S. Amoruso, A. Tortora et al., “Analysis of charged fragments emitted during excimer laser ablation of YNi2B2C borocarbide targets by time-of-flight mass spectrometry,” Applied Surface Science, vol. 186, no. 1–4, pp. 303–308, 2002.
[30]  L. Torrisi, “Fractional ionization in plasmas produced by pulsed laser ablation,” Radiation Effects and Defects in Solids, vol. 157, no. 3, pp. 347–356, 2002.
[31]  L. Torrisi, G. Ciavola, S. Gammino et al., “Metallic etching by high power Nd:yttrium-aluminum-garnet pulsed laser irradiation,” Review of Scientific Instruments, vol. 71, no. 11, pp. 4330–4334, 2000.
[32]  A. Riedo, P. Wahlstr?m, J. A. Scheer, P. Wurz, and M. Tulej, “Effect of long duration UV irradiation on diamondlike carbon surfaces in the presence of a hydrocarbon gaseous atmosphere,” Journal of Applied Physics, vol. 108, no. 114915, 2010.
[33]  S. Amoruso, A. Amodeo, V. Berardi, R. Bruzzese, N. Spinelli, and R. Velotta, “Laser produced plasmas in high fluence ablation of metallic surfaces probed by time-of-flight mass spectrometry,” Applied Surface Science, vol. 96–98, pp. 175–180, 1996.
[34]  J. álvarez-Ruiz, M. López-Arias, R. De Nalda, M. Martín, A. Arregui, and L. Ba?ares, “Generation of CdS clusters using laser ablation: the role of wavelength and fluence,” Applied Physics A, vol. 95, no. 3, pp. 681–687, 2009.
[35]  V. Ignatova, L. Van Vaeck, R. Gijbels, and F. Adams, “Molecular speciation of inorganic mixtures by Fourier transform laser microprobe mass spectrometry,” International Journal of Mass Spectrometry, vol. 225, no. 3, pp. 213–224, 2003.
[36]  B. Yan, L. Li, Q. Yu, W. Hang, J. He, and B. Huang, “High irradiance laser ionization mass spectrometry for direct speciation of iron oxides,” Journal of the American Society for Mass Spectrometry, vol. 21, no. 7, pp. 1227–1234, 2010.
[37]  R. Torres and M. Martin, “Laser ablation and time-of-flight mass-spectrometric study of SiO,” Applied Surface Science, vol. 193, no. 1–4, pp. 149–155, 2002.
[38]  R. Hergenr?der, O. Samek, and V. Hommes, “Femtosecond laser ablation elemental mass spectrometry,” Mass Spectrometry Reviews, vol. 25, no. 4, pp. 551–572, 2006.
[39]  R. K. Boyd, C. Basic, and R. A. Bethem, Trace Quantitative Analysis by Mass Spectrometry, John Wiley & Sons, 2008.
[40]  H. Y. McSween Jr. and G. R. Huss, Cosmochemistry, Cambridge University Press, Cambridge, UK, 2010.
[41]  F. Aubriet, C. Poleunis, J. F. Muller, and P. Bertrand, “Laser ablation and secondary ion mass spectrometry of inorganic transition-metal compounds. Part I: comparison between static ToF-SIMS and LA-FTICRMS,” Journal of Mass Spectrometry, vol. 41, no. 4, pp. 527–542, 2006.
[42]  L. Van Vaeck, A. Adriaens, and F. Adams, “Microscopical speciation analysis with laser microprobe mass spectrometry and static secondary ion mass spectrometry,” Spectrochimica Acta B, vol. 53, no. 2, pp. 367–378, 1998.
[43]  B. Maunit, A. Hachimi, P. Manuelli, P. J. Calba, and J. F. Muller, “Formation of iron oxides clusters induced by resonant laser ablation/ionization,” International Journal of Mass Spectrometry and Ion Processes, vol. 156, no. 3, pp. 173–187, 1996.
[44]  A. T. De Ville D'Avray, E. E. Carpenter, C. J. O'Connor, and R. B. Cole, “Characterization of ferrite nanoparticles by laser desorption/ionization mass spectrometry,” European Journal of Mass Spectrometry, vol. 4, no. 6, pp. 441–449, 1998.
[45]  F. Aubriet and J. F. Muller, “About the atypical behavior of CrO3, MoO3, and WO3 during their UV laser ablation/ionization,” Journal of Physical Chemistry A, vol. 106, no. 25, pp. 6053–6059, 2002.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133