全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

低磷胁迫下水稻苗期根长性状的QTL定位

DOI: 10.7668/hbnxb.2013.06.002, PP. 6-10

Keywords: 水稻,低磷胁迫,根长,染色体片段置换系,QTL

Full-Text   Cite this paper   Add to My Lib

Abstract:

磷素缺乏限制作物产量的提高,水稻低磷胁迫下根系伸长性状的遗传研究,对选育耐低磷品种具有指导意义。利用一套以9311为遗传背景携带日本晴置换片段的染色体片段置换系为材料,对低磷胁迫下水稻苗期主根伸长性状及相对性状进行了QTL定位。结果表明,两亲本及置换系群体对低磷反应存在明显差异。共定位到9个QTLs,其中正常水平下2个,低磷胁迫水平下4个以及3个相对性状QTLs。9个QTLs中有5个QTLs的加性效应值为负,效应来源于低磷敏感亲本日本晴,其余4个QTLs的加性效应值为正,效应来源于耐低磷亲本9311。在低磷根长和相对性状中共同检测到一个QTL,位于水稻第5染色体上,该位点没有磷相关QTL的报道。以上结果将为准确鉴定水稻耐低磷胁迫的遗传位点及分子标记辅助选育耐性品种提供依据。

References

[1]  Akinrinde E A,Gaizer T.Differences in the performance and phosphorus-use efficiency of some tropical rice( Oryza sativa L.) varieties[J].Pakistan J Nutr,2006,5( 3): 206 -211.
[2]  Fageria N K,Wright R J,Baligar V C.Rice cultivar evaluation for phosphorus use efficiency[J].Plant Soil,1988,111( 1): 105-109.
[3]  Wissuwa M,Ae N.Genotypic variation for tolerance to phosphorus deficiency in rice and the potential for its exploitation in rice improvement[J].Plant Breed,2001,120: 43-48.
[4]  Wissuwa M,Yano M,Ae N.Mapping of QTLs for phosphorus-deficiency tolerance in rice ( Oryza sativa L.)[J].Theor Appl Genet,1998,97: 777-783.
[5]  吴平,倪俊健.应用AFLP 与RFLP 标记研究水稻磷吸收与利用率的数量性状位点[J].植物学报,2000,42( 3): 229-233.
[6]  Hu B,Wu P,Liao C Y, et al.QTLs and epistasis underlying activity of acid phosphatase under phosphorus sufficient and deficient condition in rice ( Oryza sativa L.)[J].Plant Soil,2001,230: 99-105.
[7]  Ming F,Zheng X W,Mi G H, et al.Identification of quantitative trait loci affecting tolerance to low phosphorus in rice( Oryza Sativa L.) [J].Chinese Sci Bull,2000,45( 6): 520-525.
[8]  Ni J J,Wu P,Senadhira D, et al.Mapping QTLs for phosphorus deficiency tolerance in rice( Oryza sativa L.) [J].Theor Appl Genet,1998,97: 1361-1369.
[9]  Shimizu A,Kato K,Komatsu A, et al.Genetic analysis of root elongation induced by phosphorus deficiency in rice( Oryza sativa L.): fine QTL mapping and multivariate analysis of related traits[J].Theor Appl Genet,2008,117:987-996.
[10]  Shimizu A,Yanagihara S,Kawasaki S, et al.Phosphorus deficiency-induced root elongation and its QTL in rice( Oryza sativa L.) [J].Theor Appl Genet,2004,109:1361-1368.
[11]  Zhu W Y,Lin J,Yang D W, et al.Development of chromosome segment substitution lines derived from backcross between two sequenced rice cultivars,indica recipient 93-11 and japonica donor Nipponbare[J].Plant Mol Biol Rep,2009,27: 126-131.
[12]  赵春芳,周丽慧,于新,等.基于CSSL 的高密度物理图谱定位水稻分蘖角度QTL[J].植物学报, 2012,47( 6): 594-601.
[13]  Yoshida S,Forno D A,Cock J H, et al.Laboratory manual for physiological studies of rice[M].The third edition.Int Rice Res Inst Manila,Philippines,1976: 61 -64.
[14]  McCouch S R,Cho Y G,Yano M, et al.Report on QTL nomenclature[J].Rice Genet Newsl,1997,14: 11-13.
[15]  He Y,Lian H,Yan X.Localized supply of phosphorus induces root morphological and architectural changes of rice in split and stratified soil cultures[J].Plant Soil, 2003,248: 247-256.
[16]  Kirk G J D,Du L V.Changes in rice root architecture, porosity,and oxygen and proton release under phosphorus deficiency[J].New Phytol,1997,135: 191-200.
[17]  Steingrobe B,Schmid H,Claassen N.Root production and root mortality of winter barley and its implication with regard to phosphate acquisition[J].Plant Soil,2001,237: 239-248.
[18]  王雨,孙永建,陈灯银,等.水稻染色体片段置换系对氮、磷胁迫反应差异及其QTL 分析[J].作物学报,2009,35( 4): 580-587.
[19]  穆平,黄超,李君霞,等.低磷胁迫下水稻产量性状变化及其QTL 定位[J].作物学报,2008,34 ( 7):1137-1142.
[20]  Wissuwa M,Wegner J,Ae N, et al.Substitution mapping of Pup1: a major QTL increasing phosphorus uptake of rice from a phosphorus-deficient soil[J].Theor Appl Genet,2002,105: 890-897.
[21]  Gamuyao R,Chin J H,Pariasca-Tanaka J, et al.The protein kinase Pstoll from traditional rice confers tolerance of phosphorus deficiency[J].Nature,2012,488: 535 -539.
[22]  史向远,王秀红,韩彦青,等.玉米耐低磷基因型的筛选[J].山西农业科学, 2013,40( 3): 217-220,223.
[23]  万丽玮,张文会,赵志超,等.水稻DH 群体苗期耐低磷QTL 分析[J].广西农业科学,2009,40 ( 11): 1393 -1396.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133