全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

郑丰5号α-醇溶蛋白基因的克隆与序列分析

DOI: 10.3969/j.issn.1000-7091.2013.04.009, PP. 46-52

Keywords: &alpha,-醇溶蛋白,郑丰5号,克隆,序列分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

α-醇溶蛋白是小麦籽粒贮藏蛋白的重要组分,其组成与含量对小麦加工品质具有重要影响。利用PCR从郑丰5号基因组中克隆α-醇溶蛋白基因,并对其序列进行分析。经克隆共获得32个α-醇溶蛋白新基因(ZF5A-1~ZF5A-32,GenBank注册序列号为JX828280~JX828311),其中15个为假基因,17个(ZF5A-1~ZF5A-17)具有完整开放阅读框。17个α-醇溶蛋白新基因中,除ZF5A-1、ZF5A-3、ZF5A-6、ZF5A-9、ZF5A-10、ZF5A-11、ZF5A-15编码的蛋白在特征Ⅱ区含有1个额外的半胱氨酸(C)外,其他10个基因编码的蛋白均具有α-醇溶蛋白的典型结构。根据推断氨基酸序列中4种主要T细胞优势多肽的分布及多聚谷氨酰胺区的长度,推测ZF5A-7和ZF5A-12可能定位于6A染色体,ZF5A-4、ZF5A-13、ZF5A-14和ZF5A-17可能定位于6B染色体,而ZF5A-1~ZF5A-3、ZF5A-5、ZF5A-6、ZF5A-8~ZF5A-11、ZF5A-15和ZF5A-16可能定位于6D染色体。17个新克隆α-醇溶蛋白基因及4个已知α-醇溶蛋白基因编码的蛋白的二级结构预测结果表明:α-螺旋、β-折叠的位置和核心序列是相对保守的,但不同蛋白α-螺旋和β-折叠的数量以及参与形成同一保守区域α-螺旋和β-折叠的氨基酸残基数却并不相同。克隆的17个α-醇溶蛋白基因中,除ZF5A-17编码的蛋白缺少α-螺旋(H2)、ZF5A-2、ZF5A-8编码的蛋白在特征区Ⅰ均存在1个额外的α-螺旋(HE1)、GQ891685和ZF5A-15编码的蛋白在多聚谷氨酰胺Ⅱ区存在1个额外的α-螺旋(HE2)外,5个保守的α-螺旋(H1~H5)恒定出现在其他基因的2个谷氨酰胺重复区和特征区中;此外,在C-末端特征区大部分基因(61.11%)还形成1个β-折叠结构(E)。郑丰5号中具有较多额外半胱氨酸、α-螺旋和β-折叠的α-醇溶蛋白基因,可能与其良好的加工品质密切相关。

References

[1]  Ma W,Apples R,Bekes F,et al. Genetic characterization of dough rheological properties in a wheat doubled haploid population: additive genetic effects and epistatic interac-tions[J]. Theoretical and Applied Genetics,2005,111: 410-422.
[2]  Wieser H. Chemistry of gluten proteins[J]. Food Microbi-ology,2007,24: 115-119.
[3]  Chen F G,Xu C H,Chen M Z,et al. A new alpha-gliadin gene family for wheat breeding: somatic introgression line II-12 derived from Triticum aestivum and Agropyron elon-gatum[J]. Molecular Breeding,2008,22: 675-685.
[4]  Gu Y Q,Crossman C,Kong X,et al. Genomic organiza-tion of the complex alpha-gliadin gene loci in wheat[J]. Theoretical and Applied Genetics,2004,109: 648-657.
[5]  Anderson O D,Greene F C. The-gliadin gene family. II. DNA and protein sequence variation,subfamily structure,and origins of pseudogenes[J]. Theoretical and Applied Genetics,1997,95: 59-65
[6]  D''ovidion R,Masci S. The low-molecular-weight glutenin subunits of wheat gluten[J]. Journal of Cereal Science,2004,39: 321-339
[7]  Khatkar B S,Fido R J,TATHAM S,et al. Functional properties of wheat gliadins. Effects on dynamic rheo-logical properties of wheat gluten[J]. Journal of Cereal Science,2002,35: 307-313.
[8]  李 敏,高 翔,陈其皎,等. 普通小麦中-醇溶蛋白 基因(GQ891685) 的克隆 表达及品质效应鉴定[J]. 中 国农业科学,2011,43: 4765-4774.
[9]  Arentz-Hansen H,Kren R,Molberg,et al. The intesti-nal T cell response to-gliadin in adult celiac disease is focused on a single deamidated glutamine targeted by tis-sue transglutaminase[J]. The Journal of Experimental Medicine,2000,191: 603-612.
[10]  Vader W,Steoeniak D,Kooy Y,et al. The HLA-DQ2 gene dose effect in celiac disease is directly related to the magnitude and breadth of gluten-specific T cell re-sponses[J]. Proceedings of the National Academy of Sciences of USA,2003,100: 12390-12395.
[11]  Van Herpen T W J M,Goryunova S V,Van der schoot J,et al. Alpha-gliadin genes from the A,B,and D genomesof wheat contain different sets of celiac disease epitopes [J]. BMC Genomics,2006,7: 1 13.
[12]  Vaccino P,Becker H A,Brandolini A,et al. A catalogue of Triticum monococcum genes encoding toxic and immu-nogenic peptides for celiac disease patients[J]. Molecu-lar Genetics and Genomics,2009,281: 289-300.
[13]  Ciccippo R,Sabatino A D,Corazza G R. The immune recognition of gluten in coeliac disease[J]. Clinical and Experimental Immunology,2005,140: 408-416.
[14]  Koining F. Celiac disease: quantity matters[J]. Seminars in Immunopathology,2012,34: 541-549.
[15]  Stein N,Herren G,Keller B. A new DNA extraction method for high-throughput marker analysis in a large-genome species such as Triticum aestivum[J]. Plant Breeding,2001,120(4): 354-356.
[16]  李玉阁,邢冉冉,李锁平. 栽培一粒小麦-醇溶蛋白 新基因的克隆与序列分析[J]. 麦类作物学报,2012,32(3): 387-392.
[17]  Okita T W,Cheesbrough V,Reeves C D. Evolution and heterogeneity of the alpha-/beta-type and gamma-type gliadin DNA sequences[J]. The Journal of Biological Chemistry,1985,260: 8203-8213.
[18]  Lafiandra D,Kasarda D D,Morris R. Chromosomal as-signment of genes coding for the wheat gliadin protein components of the cultivars Cheyenne'' and Chinese Spring'' by two-dimensional (two-pH ) electrophoresis [J]. Theoretical and Applied Genetics,1984,68 (6): 531-539.
[19]  Palopoli L G,Simona E,Rombo A,et al. Improving pro-tein secondary structure predictions by prediction fusion [J] . Journal of Computational Biology,2009,3(1): 217-232.
[20]  Koswatta T J,Samaraweera P,Sumansingle V A. A sim-ple comparison between specific protein secondary struc-ture prediction tools[J]. Tropical Agricultural Research,2011,23(1): 91-98.
[21]  Link K,Simossis V A,Taylorw R,et al. A simple and fast secondary structure prediction method using hidden neural networks[J] . Bioinformatics,2005,21(2): 152-159.
[22]  Xie Z Z,Wang C Y,Wang K,et al. Molecular character-ization of the celiac disease epitope domains in-gliadin genes in Aegilops tauschii and hexaploid wheats(Triticum aestivum L. ) [J]. Theoretical and Applied Genetics,2010,121: 1239-1251.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133