全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

外源NO供体SNP对PEG模拟干旱胁迫下高羊茅种子萌发及幼苗抗性生理的影响

DOI: 10.3969/j.issn.1000-7091.2013.04.017, PP. 86-92

Keywords: 外源NO供体,硝普钠,高羊茅,PEG,干旱胁迫,萌发,抗性

Full-Text   Cite this paper   Add to My Lib

Abstract:

以高羊茅为研究对象,采用不同PEG模拟干旱处理(CK、10%PEG、0.1mmol/LSNP+10%PEG、1.0mmol/LSNP+10%PEG等)方法,就外源NO供体SNP对高羊茅种子的萌发、幼苗生长及抗逆性的影响进行了探讨。结果表明,在PEG模拟干旱胁迫下,高羊茅种子的发芽率、发芽势、发芽指数、活力指数和幼苗叶绿素含量较对照呈下降趋势,而幼苗丙二醛(MDA)、脯氨酸、可溶性糖、超氧阴离子(O2.-)和过氧化氢(H2O2)含量呈上升趋势,超氧化物歧化酶(SOD)和过氧化物酶(POD)活性则呈现先升高后降低的趋势。上述结果说明PEG模拟的干旱胁迫,使得高羊茅在种子萌发及幼苗生长过程中遭受逆境胁迫,且生长发育受到显著抑制。经外源NO供体SNP处理后,模拟干旱胁迫下的高羊茅种子发芽率、发芽势、发芽指数、活力指数和幼苗叶片叶绿素、脯氨酸、可溶性糖含量及SOD、POD、CAT活性均显著升高,而幼苗叶片MDA、O2.-和H2O2含量显著下降,说明外源NO供体SNP处理后使PEG模拟干旱胁迫下高羊茅的生长发育得到了促进,减轻了干旱胁迫对高羊茅造成的伤害,提高了植株的整体抗旱性。通过对比几种不同SNP浓度,结果说明0.1mmol/LSNP对PEG模拟干旱胁迫下高羊茅种子萌发及幼苗的保护效应较为显著。

References

[1]  杨子君,赵树兰,多立安. 富营养化水体灌溉对高羊茅 生理生态特征的影响[J] .植物研究,2009,29(4): 439-444.
[2]  刘慧霞,王康英,郭兴华. 不同土壤水分条件下硅对坪 用高羊茅种子出苗及生物学特性的影响[J]. 草业学 报,2012,21(1): 199-205.
[3]  代 勋,李忠光,龚 明. 赤霉素 钙和甜菜碱对小桐 子种子萌发及幼苗抗低温和干旱的影响[J]. 植物科 学学报,2012,30(2): 204-212.
[4]  马富举,李丹丹,蔡 剑,等. 干旱胁迫对小麦幼苗根系生长和叶片光合作用的影响[J]. 应用生态学报,2012,23(3): 724-730.
[5]  马俊会,杨华瑞,许喜堂,等. PEG-6000 胁迫对小麦三 叶期蛋白表达的影响 [J]. 麦类作物学报,2010,30 (5): 858-862.
[6]  朱教君,康宏樟,李智辉. 不同水分胁迫方式对沙地樟 子松幼苗光合特性的影响[J]. 北京林业大学学报,2006,28(2): 57-60.
[7]  Besson-Bard A,Pugin A,Wendehenne D. New insights into nitric oxide signaling in plants[J]. Annual Review of Plant Biology,2008,59: 21-39.
[8]  Crawford N M,Guo F Q. New insights into nitric oxide metabolism and regulatory functions[J]. Trends in Plant Science,2005,10: 195-200.
[9]  Garcia-Mata,Lamattina L. Nitric oxide induces stomatal closure and enhances the adaptive plant response against drought stress [J]. Plant Physiol,2001,126: 1196-1204.
[10]  Beligni M V,Lamattina L. Is nitric oxide toxic or protec-tive[J]. Trends Plant Science,1999,4(8): 229-300.
[11]  Beligni M V,Lamattina L. Nitric oxide protects against cellular damage produced by methylviologen herbicides in potato plants [J]. Nitric Oxide,1999,3 (3): 199-208.
[12]  Zhang H,Shen W B,Xu L L. Effects of nitric oxide on the germination of wheat seeds and its reactive oxygen species metabolisms under osmotic stress[J]. Acta Bo-tanica Sinica,2003,45: 901-905.
[13]  邵瑞鑫,上官周平. 外源一氧化氮供体 SNP 对受旱小 麦光合色素含量和 PS II 光能利用能力的影响[J]. 作物学报,2008,34(5): 818-822.
[14]  李海燕,郭永成,李刘洋,等. 外源一氧化氮对镉胁迫 下玉米幼苗根生长及氧化伤害的影响[J]. 西北植物 学报,2012,32(8): 1599-1605.
[15]  蒋明敏,徐晟,夏冰,等. 干旱胁迫下外源氯化 钙 水杨酸和一氧化氮对石蒜抗旱性的影响[J]. 植 物生理学报,2012,48(9): 909-916.
[16]  国家技术监督局. GB/T 3543. 1-3543. 7-1995 农作物 种子检验规程[S]. 北京: 中国标准出版社,1995.
[17]  回振龙,马兰,李朝周. CoCl2 对酸胁迫下多花黑麦 草种子萌发及幼苗抗性的影响[J]. 草业科学,2012,29(5): 753-758.
[18]  邹琦.植物生理学实验指导[M] . 北京: 中国农业出 版社,2000.
[19]  Giannopolitis C N,Ries S K. Superoxide dismutases. I. Occurrence in higher plants [J]. Plant Physiology,1977,59: 309-314.
[20]  Fu J M,Huang B. Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress [J]. Environmental and Ex-perimental Botany,2001,45: 105-114.
[21]  Chance B,Maehly A C. Assay of catalase and peroxida-ses[J]. Methods in Enzymology,1955,2: 764-775.
[22]  Ke D S,Wang A G,Sun G C,et al. The effect of active oxygen on the activity of ACC synthase induced by exog-enous IAA [J]. Acta Botanica Sinica,2002,44: 551-556.
[23]  Prochazkova D,Sairam R K,Srivastava G C,et al. Oxida-tive stress and antioxidant activity as the basis of senes-cence in maize leaves [J]. Plant Science,2001,161: 765-771.
[24]  曹 慧,王孝威,邹岩梅,等. 外源 NO 对干旱胁迫下 平邑甜茶幼苗叶绿素荧光参数和光合速率的影响 [J]. 园艺学报,2011,38(4): 613-620.
[25]  He Y K,Tang R H,Hao Y,et al. Nitric oxide represses the Arabidopsis floral transition [J]. Science,2004,305: 1968-1971.
[26]  Song L L,Ding W,Zhao M G,et al. Nitric oxide protects against oxidative stress under heat stress in the calluses from two ecotypes of reed[J]. Photosynthesis Research,2006,171: 449-458.
[27]  李明,王根轩. 干旱胁迫对干草幼苗保护酶活性及 脂质过氧化作用的影响[J]. 生态学报,2002,22(4):503-507.
[28]  Li Chao-zhou,Wang Gen-xuan. Interactions between re-active oxygen species,ethylene and polyamines in leaves of Glycyrrhiza inflata seedlings under root osmotic stress [J]. Plant Growth Regulation,2004,42: 55-60.
[29]  Foyer C H,Noctor G. Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context[J]. Plant Cell Environ,2009,28: 1056-1071.
[30]  Gill S S,Tuteja N. Reactive oxygen species and antioxi-dant machinery in abiotic stress tolerance in crop plants [J]. Plant Physiol Biochem,2010,48: 909-930.
[31]  Liu X,Huang B. Heat stress injury in relation to mem-brane lipid peroxidation in creeping bentgrass[J]. Crop Science,2000,40: 503-513.
[32]  李朝周. CoCl2 对 Na2 CO3 胁迫下苜蓿幼苗叶片细胞 膜的保护作用[J]. 草业学报,2007,16(3): 49-54.
[33]  焦健,李朝周,黄高宝. 钴对干旱胁迫下大豆幼苗 叶片的保护作用及其机理[J]. 应用生态学报,2006,17(5): 796-800.
[34]  焦健,李朝周,黄高宝. 乙烯产生抑制剂对高温胁 迫下蚕豆幼苗叶片的保护作用[J]. 植物生态学报,2006,30(3): 465-471.
[35]  赵丽英,邓西平,山仑. 活性氧清除系统对干旱胁迫 的响应机制[J] . 西北植物学报,2005,25 (2): 413-418.
[36]  王广恩,金卫平,李俊兰,等. 干旱胁迫下外源钙对棉 花幼苗抗旱相关生理指标的影响[J]. 华北农学报,2010,25(增刊): 115-118.
[37]  郭修武,王丛丛,周兴本,等. 水分胁迫下肥料配比对 葡萄生长发育的影响[J]. 华北农学报,2012,27(2): 140-145.
[38]  冯慧芳,薛 立,任向荣,等. 4 种阔叶幼苗对 PEG 模 拟干旱的生理响应[J]. 生态学报,2011,31(2): 371-382.
[39]  左利萍,李 毅,焦 健. 渗透胁迫下河北杨叶片的生 理响应及相关分析[J]. 林业科学,2008,44(8): 56-61.
[40]  刘建新,王金成,王瑞娟,等. 硝普钠对镧胁迫下黑麦 草幼苗光合特性及矿质元素吸收的影响[J]. 环境科 学学报,2012,32(11): 2898-2904.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133