全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

不同水分环境条件下小麦IL群体产量相关性状遗传和关联性分析

DOI: 10.3969/j.issn.1000-7091.2013.04.010, PP. 53-61

Keywords: 小麦,IL群体,干旱胁迫,农艺性状,关联性分析,遗传分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

干旱是限制小麦产量形成的重要非生物胁迫因子,研究小麦产量相关性状的抗旱遗传特性对小麦抗旱遗传改良具有重要意义。以小麦回交导入系(IL)群体((晋麦47×西峰20)×晋麦47)BC3F4的160个株系及其亲本为材料,研究不同水分环境条件下株高(PH)、穗下节长(PL)、单株穗数(SPP)、穗长(SL)、单株小穗数(TSP)、单株总粒数(GNP)、主穗小穗数(SMS)、主穗粒数(GMS)、千粒质量(TGW)和小区产量(GY)的遗传特点及相互关系,评价群体性状的遗传变异。结果表明:在不同水分环境条件下,小麦IL群体各目标性状表型偏向于轮回亲本晋麦47,变异广泛,多样性指数达0.74~0.97,且存在超亲分离,总体呈尖顶峰的负偏态分布。在4种水分环境条件下,小麦IL群体的PH、PL和TGW表现出较高的遗传力(h2B=0.48~0.81),其他性状遗传力较低(h2B=0.27~0.73)。性状之间普遍表现为不同程度的正相关,在干旱胁迫条件下,TGW和PH分别与小区产量有较高的相关性和关联度。该群体适合进行抗旱性状数量遗传研究。

References

[1]  Dodig D,Zoric '' M,Kobiljski B,et al. Genetic and associa-tion mapping study of wheat agronomic traits under con-trasting water regimes[J]. International Journal of Molec-ular Sciences,2012,13: 6167-6188.
[2]  Alireza N G,Gadir N G,Davoud H. Effects of drought stress condition on the yield and yield components of ad-vanced wheat genotypes in Ardabil,Iran[J]. Journal of Food,Agriculture & Environment,2009,7(3&4): 228-234.
[3]  山 仑,黄占斌,张岁歧. 节水农业[M]. 北京: 清华大 学出版社,2000: 12-13.
[4]  景蕊莲. 作物抗旱节水研究进展[J]. 中国农业科技导 报,2007,9(1): 1-5.
[5]  Dholakia B B,Ammiraju J S S,Singh H,et al. Molecular marker analysis of kernel size and shape in bread wheat [J]. Plant Breeding,2003,122(5): 392-395.
[6]  Dodig D,Zoric '' M,Kandic '' V,et al. Comparison of respon-ses to drought stress of 100 wheat accessions and landrac-es to identify opportunities for improving wheat drought resistance[J]. Plant Breeding,2012,131: 369-379.
[7]  Reynolds M,Dreccer F,Trethowan R. Drought-adaptive traits derived from wheat wild relatives and landraces [J]. Journal of Experimental Botany,2007,58: 177-186.
[8]  Quarrie S A,Steed A,Calestani C,et al. A high-density genetic map of hexaploid wheat (Triticum aestivum L. ) from the cross Chinese Spring × SQ1 and its use to com-pare QTLs for grain yield across a range of environments [J] . Theoretical and Applied Genetics,2005,110: 865-880.
[9]  Nezhad K Z,Weber W E,Rder M S,et al. QTL analy-sis for thousand-grain weight under terminal drought stress in bread wheat (Triticum aestivum L. ) [J]. Eu-phytica,2012,186: 127-138.
[10]  Golabadi M,Arzani A,Mirmohammadi-Maibody S A M,et al. Identification of microsatellite markers linked with yield components under drought stress at terminal growth stages in durum wheat[J]. Euphytica,2011,177: 207-221.
[11]  Peleg Z,Fahima T,Krugman T,et al. Genomic dissection of drought resistance in durum wheat wild emmer wheat recombinant inbreed line population[J]. Plant Cell and Environment,2009,32: 758-779.
[12]  Dodig D,Zoric M,Knezevic D,et al. Genotype × environ-ment interaction for wheat yield in different drought stress conditions and agronomic traits suitable for selection [J] . Australian Journal of Agricultural Research,2008,59: 536-545.
[13]  Goyal A,Beres B L,Randhawa H S,et al. Yield stabilityanalysis of broadly adaptive triticale germplasm in south-ern and central Alberta,Canada,for industrial end-use suitability[J]. Canadian Journal Plant Science,2011,91: 125-135.
[14]  Wu X,Wang Z,Chang X,et al. Genetic dissection of the developmental behaviours of plant height in wheat under diverse water regimes[J]. Journal of Experimental Bota-ny,2010,61: 2923-2937.
[15]  Groos C,Robert N,Bervas E,et al. Genetic analysis of grain protein-content,grain yield and thousand-kernel weight in bread wheat[J]. Theoretical and Applied Ge-netics,2003,106: 1032-1040.
[16]  Cui F,Li J,Ding A,et al. Conditional QTL mapping for plant height with respect to the length of the spike and internode in two mapping populations of wheat[J]. The-oretical and Applied Genetics,2011,122: 1517-1536.
[17]  Ibrahim S E,Schubert A,Pillen K,et al. Comparison of QTLs for drought tolerance traits between two advanced backcross populations of spring wheat[J]. International Journal of Molecular Sciences,2012a,2: 216-227.
[18]  Ibrahim S E,Schubert A,Pillen K,et al. QTL analysis of drought tolerance for seedling root morphological traits inan advanced backcross population of spring wheat[J]. International Journal of Molecular Sciences,2012b,2: 619-629.
[19]  Liu S B,Zhou R Z,Dong Y C,et al. Development,utili-zation of introgression lines using a synthetic wheat as donor[J]. Theoretical and Applied Genetics,2006,112: 1360-1373.
[20]  陈稳良,景蕊莲,刘惠民,等. 晋麦47 背景回交导入系 的遗传选择与性状分析[J]. 麦类作物学报,2009,29 (2): 206-211.
[21]  施 伟,昌小平,景蕊莲. 不同水分条件下小麦生理 性状与产量的灰色关联度分析[J]. 麦类作物学报,2012,32(4): 653-659.
[22]  Shannon C E,Weaver W. The mathematical theory of communication[M]. Urbana,Chicago,USA: The Uni-versity of Lllinois,1949: 3-24.
[23]  Turner N C. Agronomic options for improving rainfall-use efficiency of crops in dryland farming systems[J]. Jour-nal of Experimental Botany,2004,55: 2413-2425.
[24]  武仙山,王正航,昌小平,等. 用株高旱胁迫系数分析 小麦发育中的抗旱性动态[J]. 作物学报,2008,34 (11): 2010-2018.
[25]  张文英,柳斌辉,彭海城,等. 不同灌水处理小麦品种 抗旱性鉴定指标遗传规律研究[J]. 灌溉排水学报,2009,28(2): 74-77.
[26]  许海霞,李 伟,程西永,等. 干旱胁迫对小麦农艺性 状的影响[J]. 中国农学通报,2008,24 (3): 125-129.
[27]  Bhutta W M. Role of some agronomic traits for grain yield production in wheat (Triticum aestivum L. ) geno-types under drought conditions [J]. Revista UDO Agrícola,2006,6: 11-19.
[28]  Wang R X,Hai L,Zhang X Y,et al. QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai Yu8679 [J]. Heoretical and Applied Genetics,2009,118: 313-325.
[29]  詹海仙,畅志坚,魏爱丽,等. 干旱胁迫对小麦生理指 标的影响[J]. 山西农业科学,2011,39(10): 1049-1051.
[30]  张丽华,姚艳荣,裴翠娟,等. 干旱年型播前土壤底 墒 播种密度及灌水对冬小麦的产量效应[J]. 华北 农学报,2011,26(增刊): 186-188.
[31]  张文英,柳斌辉,彭海城,等. 小麦品种抗旱性鉴定指 标遗传规律研究[J]. 华北农学报,2008,23(增刊): 92-95.
[32]  杨德龙,张国宏,李兴茂,等. 小麦 RIL 群体株高和千 粒重的抗旱遗传特性研究[J]. 应用生态学报,2012,23(6): 1569-1576.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133