全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

紫云英还田对水稻产量、土壤团聚性及其有机碳和全氮分布的影响

DOI: 10.3969/j.issn.1000-7091.2012.06.043, PP. 224-228

Keywords: 紫云英,土壤团聚体,团聚体稳定性,有机碳,全氮,水稻产量

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用田间试验方法,探讨紫云英-有机肥配施对土壤团聚结构、有机碳和全氮分布及水稻产量的影响。试验设置了有机肥1500kg/hm2+0kg/hm2紫云英翻压量(CK)、有机肥1500kg/hm2+紫云英翻压量30000kg/hm2(B1)、有机肥1500kg/hm2+紫云英翻压量45000kg/hm2(B2)和有机肥1500kg/hm2+紫云英翻压量60000kg/hm2(B3)共4个处理。结果表明,翻压紫云英未显著提高大团聚体的含量,却明显提高了团聚体稳定性,改善了土壤结构,且团聚体稳定性与土壤有机碳含量呈正相关;随着紫云英翻压量增加,水稻生育期逐渐延长(CK

References

[1]  [J]. Soil Sci Soc Am J, 1999, 63: 1350-1358.
[2]  Guggenberger G,Elliott E T,Frey S D, et al. Microbial contributions to the aggregation of a cultivated grassland soil amended with starch [J]. Soil Biol Biochem, 1999, 31: 407-419.
[3]  Birgitte N,Leif P. Influence of arbuscular mycorrhizal fungion soil structure and aggregate stability of vertisol
[4]  [J]. Plant and Soil, 2000, 218: 173-183.
[5]  魏朝富,谢德体,陈世正. 紫色水稻土有机无机复合与土壤团聚体关系[J]. 土壤学报, 1996, 33( 1) : 70-76.
[6]  章明奎,何振利,陈国潮. 利用方式对红壤水稳定团聚体形成的影响[J]. 土壤学报,1997,34( 4) : 359-366.
[7]  Elliott E T. Aggregate structure and carbon,nitrogen, and phosphorus in native cultivated soils [J]. Soil Sci Soc Am J, 1986, 50: 627-633.
[8]  Sylvia D M,Fuhrmann J J,Hartel P G, et al. Principles and applications of soil microbiology [M]. Upper Saddle River,New Jersey: Pearson Education Inc, 2005.
[9]  姜灿烂,何园球,刘晓利,等. 长期施用有机肥对旱地红壤团聚体结构与稳定性的影响[J]. 土壤学报,2010, 47( 4) : 715-722.
[10]  王兴祥,张桃林,鲁如坤. 施肥措施对红壤结构的影响[J]. 中国生态农业学报, 2001,9( 3) : 70-72.
[11]  焦彬,顾荣申,张学上. 中国绿肥[M]. 北京: 农业出版社, 1986.
[12]  周晓芬,张彦才,李巧云,等. 厩肥、秸秆和绿肥的含钾状况及其对土壤和作物钾素的供应能力[J]. 华北农学报, 1999, 14( 4) : 83-87.
[13]  杨曾平,徐明岗,聂军,等. 长期冬种绿肥对双季稻种植下红壤性水稻土质量的影响及其评价[J]. 水土保持学报, 2011, 25( 3) : 92-98.
[14]  李继明,黄庆海,袁天佑,等. 长期施用绿肥对红壤稻田水稻产量和土壤养分的影响[J]. 植物营养与肥料学报, 2011, 17( 3) : 563-570.
[15]  徐昌旭,谢志坚,曹卫东,等. 翻压绿肥后不同施肥方法对水稻养分吸收及产量的影响[J]. 中国土壤与肥料, 2011,3: 35-39.
[16]  Kemper W D,Rosenau R C. Aggregate stability and size distribution [M]/ /Methods of soil analysis. Part 1. 2nd ed. Agron. Monogr. No. 9 ASA. Wisconsin: Madison, 1986: 425-442.
[17]  Nelson D W,Sommers L E. Total carbon, organic carbon, and organic matter. Laboratory methods[M]/ /Methods of soil analysis. Part 2. 2nd ed. Agron. Monogr. No. 9 ASA and SSSA. Wisconsin: Madison, 1982: 539-579.
[18]  黄运湘,王改兰,冯跃华,等. 长期定位试验条件下红壤性水稻土有机质的变化[J]. 土壤通报,2005,36( 2) : 198-184.
[19]  Six J,Elliot E T,Paustian K. Aggregate and soil organic matter dynamic under conventional and no-tillage systems
[20]  Oades J M. Soil organic matter and structural stability: mechanisms and implications for management [J]. Plant Soil, 1984, 76: 319-337.
[21]  Kushwaha C P,Tripathi S K,Singh K P. Soil organic matter and water-stable aggregates under different tillage and residue conditions in a tropical dryland agroecosystem[J]. Appl Soil Ecol, 2001, 16: 229-241.
[22]  Saroa G S,Lal R. Soil restorative effects of mulching on aggregation and carbon sequestration in a miamian soil in central Ohio [J]. Land Degrad Develop,2003,14: 481-493.
[23]  Tisdall J M,Oades J M. Organic matter and water-stable aggregates in soils [J]. J Soil Sci, 1982, 62: 141-163.
[24]  Gupta V V S R,Germida J J. Distribution of microbial biomass and its activity in different soil aggregate size classes as affected by cultivation [J]. Soil Biol Biochem, 1988, 20: 777-786.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133