全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高表达转C4型PEPC基因水稻在低氮下诱导碳氮酶稳定光合作用

DOI: 10.7668/hbnxb.2015.04.017, PP. 95-100

Keywords: 高表达转C4型PEPC基因水稻,低氮,光合特性

Full-Text   Cite this paper   Add to My Lib

Abstract:

为揭示高表达转玉米C4-PEPC基因水稻在低氮条件下的光合表现,采用高表达转玉米C4-PEPC基因水稻(PC)与原种Kitaake(WT)为试验材料,通过盆栽试验,分别测定不同的氮素条件下(中氮300kg/hm2,低氮65kg/hm2),开花后不同天数的SPAD值,光合参数以及碳氮关键酶活性。并在开花后50d收获植株,记录产量因子。结果表明:低氮处理下的PC相对于WT来说,在开花后14,28d,其净光合速率分别提高了13.10%(P<0.05)和29.29%(P<0.05)。同时,Rubisco羧化酶在开花后14,28d时活性分别提高了67.86%和52.63%(P<0.05);硝酸还原酶在14,28d时的活性分别提高79.49%(P<0.05)和17.96%;谷氨酰胺合成酶仅在开花后28d时活性提高28.48%(P<0.05)。但是通过对产量进行分析,在低氮条件下,并未发现PC的产量与WT有明显差异。可见,PC通过诱导碳氮的关键酶活性的提高维持低氮条件下高净光合速率。

References

[1]  Ku M B,Agarie S,Nomura M,et al.High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants[J].Nature Biotechnology,1999,l7(1):76-80.
[2]  焦德茂,李 霞,黄雪清,等.转 PEPC 基因水稻的光合CO2同化和叶绿素荧光特性[J].科学通报,2001,46(5):414-418.
[3]  焦德茂,匡廷云,李 霞,等.转 PEPC 基因水稻具有初级CO2浓缩机制的生理特点[J].中国科学(C辑),2003,33(1):33-39.
[4]  Ren C G,Li X,Liu X L,et al.Hydrogen peroxide regulated photosynthesis in C4-pepc transgenic rice[J].Plant Physiology and Biochemistry,2014,74:218-229.
[5]  魏晓东,李 霞,郭士伟,等.氮素水平对转C4光合基因水稻花期剑叶PSⅡ荧光特性的影响[J].华北农学报,2013,28(1):193-200.
[6]  Li X,Wang C.Physiological and metabolic changes of transgenic rice plant with increased activity of phosphoenolpyruvate carboxylase during flowering stage[J].Acta Physiologiae Plantarum,2013,35(5):1503-1512.
[7]  Li B,Li G,Kronzucker H J,et al.Ammonium stress in Arabidopsis:signaling,genetic loci,and physiological targets[J].Trends in Plant Science,2014,19(2):107-114.
[8]  Chen P,Li X,Huo K,et al.Promotion of photosynthesis in transgenic rice over-expressing of maize C4 phosphoenolpyruvate carboxylase gene by nitric oxide donors[J].Journal of Plant Physiology,2014,171(6):458-466.
[9]  Li X,Cao K,Wang C,et al.Variation of photosynthetic tolerance of rice cultivars (Oryza sativa L.) to chilling temperature in the light[J].African Journal of Biotechnology,2010,9(9):1325-1337.
[10]  Lilley R M,Walker D A.An improved spectrophotometric assay for ribulosebisphosphate carboxylase[J].Biochimica et Biophysica acta,1974,358(1):226-229.
[11]  Eckardt N A,Portis Jr A R.Heat denaturation profiles of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and Rubisco activase and the inability of Rubisco activase to restore activity of heat-denatured rubisco[J].Plant Physiology,1997,113(1):243-248.
[12]  Hu Y,Schmidhalter U.Drought and salinity:a comparison of their effects on mineral nutrition of plants[J].Journal of Plant Nutrition and Soil Science,2005,168(4):541-549.
[13]  Kraiser T,Gras D E,Gutiérrez A G,et al.A holistic view of nitrogen acquisition in plants[J].Journal of Experimental Botany,2011,62(4):1455-1466.
[14]  季本华,朱素琴,焦德茂.转玉米C4光合酶基因水稻株系中的光合C4微循环[J].作物学报,2004,30(6):536-543.
[15]  Jiao D M,Huang X,Li X,et al.Photosynthetic characteristics and tolerance to photo-oxidation of transgenic rice expressing C4 photosynthesis enzymes[J].Photosynthesis Research,2002,72(1):85-93.
[16]  Parry M A J,Andralojc P J,Khan S,et al.Rubisco activity:effects of drought stress[J].Annals of Botany,2002,89(7):833-839.
[17]  Bethke P C,Libourel I G L,Jones R L.Nitric oxide reduces seed dormancy in Arabidopsis[J].Journal of Experimental Botany,2006,57(3):517-526.
[18]  Hu X,Neill S J,Tang Z,et al.Nitric oxide mediates gravitropic bending in soybean roots[J].Plant Physiology,2005,137(2):663-670.
[19]  Martin A,Lee J,Kichey T,et al.Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production[J].The Plant Cell,2006,18(11):3252-3274.
[20]  Obara M,Sato T,Sasaki S,et al.Identification and characterization of a QTL on chromosome 2 for cytosolic glutamine synthetase content and panicle number in rice[J].Theoretical and Applied Genetics,2004,110(1):1-11.
[21]  Tabuchi M,Abiko T,Yamaya T.Assimilation of ammonium ions and reutilization of nitrogen in rice (Oryza sativa L.)[J].Journal of Experimental Botany,2007,58(9):2319-2327.
[22]  李学勇,钱 前,李家洋.水稻分蘖的分子机理研究[J].中国科学院院刊,2003,18(4):274-276.
[23]  Mcallister C H,Beatty P H,Good A G.Engineering nitrogen use efficient crop plants:the current status[J].Plant Biotechnology Journal,2012,10(9):1011-1025.
[24]  王鹏程,杜艳艳,宋纯鹏.植物细胞一氧化氮信号转导研究进展[J].植物学报,2009,44(5):517-525.
[25]  Garcia-Mata C,Gay R,Sokolovski S,et al.Nitric oxide regulates K+ and Cl- channels in guard cells through a subset of abscisic acid-evoked signaling pathways[J].Proceedings of the National Academy of Sciences of the United States of America,2003,100(19):11116-11121.
[26]  Bouguyon E,Gojon A,Nacry P.Nitrate sensing and signaling in plants[J].Seminars in Cell & Developmental Biology,2012,23(6):648-654.
[27]  Ho C H,Lin S H,Hu H C,et al.CHL1 functions as a nitrate sensor in plants[J].Cell,2009,138(6):1184-1194.
[28]  Parker J L,Newstead S.Molecular basis of nitrate uptake by the plant nitrate transporter NRT1.1[J].Nature,2014,507(7490):68-72.
[29]  Sun J,Bankston J R,Payandeh J,et al.Crystal structure of the plant dual-affinity nitrate transporter NRT1.1[J].Nature,2014,507(7490):73-77.
[30]  Krouk G,Crawford N M,Coruzzi G M,et al.Nitrate signaling:adaptation to fluctuating environments[J].Current Opinion in Plant Biology,2010,13(3):266-273.
[31]  Remans T,Nacry P,Pervent M,et al.The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches[J].Proceedings of the National Academy of Sciences of the United States of America,2006,103(50):19206-19211.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133