全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
湖泊科学  2013 

基于遥感的鄱阳湖湖区蒸散特征及环境要素影响

DOI: 10.18307/2013.0318

Keywords: 蒸散,遥感反演,鄱阳湖湖区,MODIS

Full-Text   Cite this paper   Add to My Lib

Abstract:

蒸散是湖泊湿地生态系统水循环的重要组成部分,研究湖区地表蒸散量的时空变化对了解鄱阳湖湖区水量平衡关系具有重要意义.本研究基于MODIS数据,应用地面温度-植被指数三角关系法反演2000-2009年鄱阳湖湖区的实际蒸散量,分析湖区蒸散的时空分布特征及主要气象因子对流域蒸散的影响.结果表明:2000-2009年鄱阳湖湖区年蒸散量在685~921mm之间,平均年蒸散量为797mm,最大蒸散量出现在2004年.2000-2009年多年平均水体蒸发量为1107mm,高于湖区植被蒸散量(774mm).湖区汇水区域中蒸散量占降水的平均比例为55%,是水量平衡的主要支出项,径流系数约为0.45.湖区蒸散主要受辐射和气温的影响,月蒸散量与气温呈显著的指数相关,2007年蒸散量对温度的关系最为敏感.降水量距平与蒸散量距平的关系除2007年呈显著负相关外,其他年份相关性不显著.鄱阳湖湿地蒸散与湖泊水域面积总体呈正相关,但在水文干旱严重的2006年,当水域面积<30%时,蒸散速率随水域面积增加而减小.

References

[1]  Batra N,Islam S,Venturini V et al. Estimation and comparison of evapotranspiration from MODIS and AVHRR sensors for clear sky days over the Southern Great Plains. Remote Sensing of Environment,2006,1 03: 1-15.
[2]  Wang KC,Wang P,Li ZQ et al. A simple method to estimate actual evapotranspiration from a combination of net radiation, vegetation index,and temperature. Journal of Geophysical Research-Atmospheres,2007, 112: D15107.
[3]  Nishida K,Nemani RR,Running SW et al. An operational remote sensing algorithm of land surface evaporation. Journal of Geophysical Research,2003,1 08(D9): 4270.
[4]  Wang KC,Li ZQ,Cribb M. Estimation of evaporative fraction from a combination of day and night land surface temperatures and NDVI: A new method to determine the Priestley-Taylor parameter. Remote Sensing of Environment,2006,1 02: 293-305.
[5]  Tang RL,Li ZL,Tang B. An application of the Ts-VI triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in arid and semi-arid regions: Implementation and validation. Remote Sensing of Environment, 2010, 114(3): 540-551.
[6]  詹志明,冯兆东,秦其明. 陇西黄土高原陆面蒸散的遥感研究. 地理与地理信息科学,2 004,2 0(1): 16-19.
[7]  田辉,文军,马耀明等. 夏季黑河流域蒸散发量卫星遥感估算研究. 水科学进展,2 009,2 0(1): 18-24.
[8]  杜嘉,张柏,宋开山等. 基于MODIS 产品和SEBAL 模型的三江平原日蒸散量估算. 中国农业气象,2 010,(1): 104-110.
[9]  姜鲁光. 鄱阳湖退田还湖地区洪水风险与土地利用变化研究[学位论文]. 北京: 中国科学院研究生院,2 006.
[10]  Priestley C,Taylor R. On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review,1972,1 00(2): 81-92.
[11]  http://www.jxsl.gov.cn. 江西省水利厅, 2012.
[12]  Kustas W,Norman J. Use of remote sensing for evapotranspiration monitoring over land surfaces. Hydrological Sciences Journal,1996, 41(4): 495-516.
[13]  Kalma JD,McVicar TR,McCabe MF. Estimating land surface evaporation: a review of methods using remotely sensed surface temperature data. Surveys in Geophysics,2008, 29(4): 421-469.
[14]  Mu Q,Heinsch FA,Zhao M et al. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sensing of Environment,2007,1 11: 519-536.
[15]  Mu Q,Zhao M,Running SW. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sensing of Environment,2011, 115: 1781-1800.
[16]  Jiang L,Islam S. A methodology for estimation of surface evapotranspiration over large areas using remote sensing observations. Geophysical Research Letters,1999,2 6(17): 2773-2776.
[17]  Stisen S,Sandholt I,Nrgaard A et al. Combining the triangle method with thermal inertia to estimate regional evapotranspiration-Applied to MSG-SEVIRI data in the Senegal River basin. Remote Sensing of Environment,2008,112 (3): 1242-1255.
[18]  Jiang L,Islam S. Estimation of surface evaporation map over southern Great Plains using remote sensing data. Water Resources Research,2001, 37(2): 329-340.
[19]  Niemel? S,R?is?nen P,Savij?rvi H. Comparison of surface radiative flux parameterizations,Part I: Longwave radiation. Atmospheric Research,2001,5 8(1): 1-18.
[20]  Liang S. Quantitative remote sensing of land surfaces. Hoboken: Wiley-IEEE,2004.
[21]  更多...
[22]  赵晓松,刘元波,吴桂平. 基于遥感的2000-2009 年鄱阳湖流域蒸散特征及影响因子研究. 长江流域资源与环境, 2013, 22(3): 369-378.
[23]  Moran MS, Jackson RD,Raymond LH et al. Mapping surface energy balance components by combining Landsat Thematic Mapper and ground-based meteorological data. Remote Sensing of Environment,1989, 30(1): 77-87.
[24]  Lagouarde J,Brunet Y. A simple model for estimating the daily upward longwave surface radiation flux from NOAAAVHRR data. International Journal of Remote Sensing,1993,1 4(5): 907-925.
[25]  Burman RD,Pochop L. Evaporation,evapotranspiration and climatic data. Amsterdam: Elsevier,1994.
[26]  Jain SK,Singh R,Jain M et al. Delineation of flood-prone areas using remote sensing techniques. Water Resources Management, 2005, 19: 333-347.
[27]  Ramsey III EW. Monitoring flooding in coastal wetlands by using radar imagery and ground-based measurements. International Journal of Remote Sensing,1995, 16: 2495-2502.
[28]  李辉,李长安,张利华等. 基于MODIS 影像的鄱阳湖湖面积与水位关系研究. 第四纪研究, 2008, 28(2): 332-337.
[29]  宋平,刘元波,刘燕春. 陆地水体参数的卫星遥感反演研究进展. 地球科学进展,2 011, 26: 731-740.
[30]  赵英时. 遥感应用分析原理与方法. 北京: 科技出版社,2 003: 414-419.
[31]  谭衢林,刘正军,胡吉平等. 应用多源遥感影像提取鄱阳湖形态参数. 北京交通大学学报, 2006, 30(4): 26-30.
[32]  刘波,翟建青,高超等. 基于实测资料对日蒸散发估算模型的比较. 地球科学进展, 2010,2 5(9): 974-980.
[33]  Li ZL,Tang RL,Wang Z et al. A review of current methodologies for regional evapotranspiration estimation from remotely sensed data. Sensors, 2009,9 (5): 3801-3853.
[34]  闵骞,苏宗萍,王叙军. 近50 年鄱阳湖水面蒸发变化特征及原因分析. 气象与减灾研究,2 007,3 0: 17-20.
[35]  郭华,姜彤,王艳君等. 1955-2002 年气候因子对鄱阳湖流域径流系数的影响. 气候变化研究进展, 2006,2 (5): 217-222.
[36]  Li SG,Lai CT,Lee G et al. Evapotranspiration from a wet temperate grassland and its sensitivity to microenvironmental variables. Hydrological Processes,2005, 19: 517-532.
[37]  Suyker AE,Verma SB. Interannual water vapor and energy exchange in an irrigated maize-based agroecosystem. Agricultural and Forest Meteorology,2008,1 48(3): 417-427.
[38]  曾丽红,宋开山,张柏等. 2000 年至2008 年松嫩平原生长季蒸散量时空格局及影响因素分析. 资源科学, 2010, 32(12): 2305-2315.
[39]  裴超重,钱开铸,吕京京等. 长江源区蒸散量变化规律及其影响因素. 现代地质, 2010, 24(2): 362-368.
[40]  李世勤,闵骞,谭国良等. 鄱阳湖2006 年枯水特征及其成因研究. 水文,2 009,2 8: 73-76.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133