全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
湖泊科学  2013 

过量Zn2+对水花生(Alternantheraphiloxeroides)愈伤组织氧化胁迫及多胺代谢的影响

DOI: 10.18307/2013.0316

Keywords: 水花生愈伤组织,氧化胁迫,多胺代谢,Zn2+

Full-Text   Cite this paper   Add to My Lib

Abstract:

以植物组织培养技术培养的水花生愈伤组织为实验材料,研究了过量Zn2+(0、0.2、0.4、0.8、1.6mmol/L)对水花生愈伤组织的氧化损伤及多胺代谢的影响.结果表明,随着Zn2+浓度增加:(1)水花生愈伤组织的超氧阴离子产生速率和硫代巴比妥酸反应物水平显著提升,超氧化物歧化酶活性明显抑制,叶绿素a含量显著降低;(2)精氨酸脱羧酶和鸟氨酸脱羧酶活性均升高,多胺氧化酶和二胺氧化酶活性在低Zn2+浓度处升高、高Zn2+浓度处降低;(3)总腐胺和总精胺含量在低Zn2+浓度处降低、高Zn2+浓度处增加,总亚精胺含量仅在Zn2+浓度为1.6mmol/L时有显著增加;(4)游离态腐胺含量变化与总腐胺含量相似,游离态亚精胺含量在高Zn2+浓度时下降,游离态精胺含量仅在Zn2+浓度为0.2mmol/L时略有下降;(5)结合态腐胺和精胺在Zn2+浓度为0.2mmol/L时下降而在其余处理组中上升,结合态亚精胺含量各处理组中均增加;(6)束缚态腐胺和亚精胺含量均下降.可见,过量Zn2+胁迫导致水花生愈伤组织氧化性损伤,并扰乱其多胺代谢平衡;束缚态多胺向结合态多胺的转化是过量Zn2+胁迫下水花生愈伤组织多胺代谢变化的一个显著特征;以结合态为代表的内源性多胺积累对水花生愈伤组织抵抗过量Zn2+胁迫具有重要意义.

References

[1]  Shetty KG,Hetrick BAD,Schwab AP. Effects of mycorrhizae and fertilizer amendments on zinc tolerance of plants. Environ Pollut,1995,8 8: 307-314.
[2]  Ozturk L,Karanlik S,Ozkutlu F et al. Shoot biomass and zinc/cadmium uptake for hyperaccumulator and non-accumulator Thlaspi species in response to growth on a zinc deficient calcareous soil. Plant Sci,2003,1 64: 1095-1101.
[3]  Castiglione S,Franchin C,Fossati T et al. High zinc concentrations reduce rooting capacity and alter metallothionein gene expression in white poplar (Populus alba L. cv. Villafranca). Chemosphere,2007,6 7: 1117-1126.
[4]  Todeschini V,Lingua G,D\'Agostino G et al. Effects of high zinc concentration on poplar leaves: A morphological and biochemical study. Environ Exp Bot,2011, 71: 50-56.
[5]  Salt DE,Prince RC,Baker AJM et al. Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy. Environ Sci Technol,1999,3 3: 713-717.
[6]  Prasad KVSK,Saradhi PP,Sharmila P. Concerted action of antioxidant enzymes and curtailed growth under zinc toxicity in Brassica junca. Environ Exp Bot,1999,42: 1-10.
[7]  Lefèvre I,Correal E,Lutts S. Impact of cadmium and zinc on growth and water status of Zygophyllum fabago in two contrasting metallicolous populations from SE Spain: comparison at whole plant and tissue level. Plant Biology,2009,12: 883-894.
[8]  Morina F,Jovanovicb L,Mojovicc M et al. Zinc-induced oxidative stress in Verbascum thapsus is caused by an accumulation of reactive oxygen species and quinhydrone in the cell wall. Physiol Plantarum,2010,1 40: 209-224.
[9]  Landberg T,Jensén P,Greger M. Strategies of cadmium and zinc resistance in willow by regulation of net accumulation. Biol Plantrum,2011, 55: 133-140.
[10]  Rellán-áNarez R,Ortega-Villasante C,álvarez-Fernández A et al. Stress responses of Zea mays to cadmium and mercury. Plant Soil,2006,279: 41-50.
[11]  Macfarlane GR,Burchett MD. Photosynthetic pigments and peroxidase activity as indicators of heavy metal stress in the grey mangrove,Avicennia marina (forsk.) Vierh. Mar Pollut Bull,2001,4 2: 233-240.
[12]  Alcázar R,Marco F,Cuevas JC et al. Involvement of polyamines in plant response to abiotic stress. Biotechnol Lett, 2006,28: 1867-1876.
[13]  Groppa MD,Benavides MP. Polyamines and abiotic stress: recent advances. Amino Acids,2008, 34: 35-45.
[14]  Metha SK,Gaur JP. Heavy-mecal-induced proline accumulation and its role in ameliorating metal toxicity in Chlorella vulgaris. New Phytol,1999, 143: 253-259.
[15]  Das KC,Misra HP. Hydroxyl radical scavenging and singlet oxygen quenching properties of polyamines. Mol Cell Biochem, 2004,262: 127-133.
[16]  Papadalis AK,Roubelakis-Angelakis KA. Polyamines inhibit NADPH oxidase-mediated superoxides generation and putrescine prevents programed cell death induced by polyamine oxidase-generated hydrogen peroxide. Planta,2005,220: 826-837.
[17]  Yi TH,Ching HK. Cadmium-induced oxidative damage in rice leaves is reduced by polyamines. Plant Soil,2007, 291: 27-31.
[18]  更多...
[19]  Alvarez I,Tomaro ML,Benavides MP. Changes in polyamines,proline and ethylene in sunflower calluses treated with NaCl. Plant Cell Tiss Organ Cult,2003,7 4: 51-59.
[20]  Tang W,Newton RJ. Increase of polyphenol oxidase and decrease of polyamines correlate with tissue browning in Virginia pine (Pinus virginiana Mill.). Plant Sci,2004,167: 621-628.
[21]  Tang W,Newton RJ. Polyamines reduce salt-induced oxidative damage by increasing the activities of antioxidant enzymes and decreasing lipid peroxidation in Virginia pine. Plant Growth Regul,2005,4 6: 31-43.
[22]  袁燕,生吉萍,王捍东等. 水花生愈伤组织的诱导及根的分化. 水生生物学报, 2004, 28(6): 622-628.
[23]  王爱国,罗广华. 植物的超氧物自由基与羟胺反应的定量关系. 植物生理学通讯,1 990,6: 55-57.
[24]  Hodges DM,Delong JM,Forney CF et al. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta,1999,207: 604-611.
[25]  Giannopolitis CN,Ries SK. Superoxide dismutase in higher plants. Plant Physiol,1977,5 9: 309-314.
[26]  Liu XM,Wang JF,Yu RQ et al. Study on the changes of chlorophyll content and biomass of heterotrophic Chlorella vulgaris under different nitrogen concentrations. Plant Physiol,1999,3 5: 198-201.
[27]  Zhao FG,Sun C,Liu YL et al. Relationship between polyamine metabolism in roots and salt tolerance of barley seedlings. Acta Bot Sin,2003,4 5: 295-300.
[28]  汪天,郭世荣,刘俊等. 多胺氧化酶检测方法的改进及其在低氧水培黄瓜根系中的应用. 植物生理学通讯, 2004, 40: 358-360.
[29]  Aziz A,Larher F. Changes in polyamine titers associated with the proline response and osmotic adjustment of rape leaf discs submitted to osmotic stresses. Plant Sci,1995, 112: 175-186.
[30]  Mith?fer A,Schulze B,Boland W. Biotic and heavy metal stress response in plants: evidence for common signals. FEBS Letters,2004,5 66: 1-5.
[31]  Atal N,Saradhi PP,Mohanty P. Inhibition of the chloroplast photochemical reactions by treatment of wheat seedlings with low concentration of cadmium: analysis of electron transport activities and changes in fluorescence yield. Plant Cell Physiol, 1991, 32: 943-951.
[32]  Chamseddine M,Wided BA,Guy H et al. Cadmium and copper induction of oxidative stress and antioxidative response in tomato (Solanum lycopersicon) leaves. Plant Growth Regul,2009,5 7: 89-99.
[33]  Demiral T,Tǘrkan I. Comparative lipid peroxidation,antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ Exp Bot,2005, 53: 247-257.
[34]  Macfarlane GR,Burchett MD. Phytosynthetic pigments and peroxidase activity as indicators of heavy metal stress in the grey mangrove,Avicewnnia marina (Forsk.) Vierh. Mar pollut Bull,2001,42: 233-240.
[35]  Papadakis AK,Roubelakis-Angelakis KA. Polyamines inhibit NADPH oxidase-mediated superoxide generation and putrescine prevents programned cell death induced by polyamine oxidase-generated hydrogen peroxide. Planta,2005,220: 826-837.
[36]  Groppa MD,Tomaro ML,Benavides MP. Polyamines as protectors against cadmium or copper-induced oxidative damage in sunflower leaf discs. Plant Sci,2001, 161: 481-488.
[37]  Panicot M,Masgrau C,Borrell A et al. Effects of putrescine accumulation in tobacco transgenic plants with different expression levels of oat arginine decarboxylase. Physiol Plantrum,2002,1 14: 281-287.
[38]  Bouchereau A,Aziz A,Larher F et al. Polyamines and environmental challenges: recent development. Plant Sci,1999, 140: 103-125.
[39]  Sanchez DH,Cuevas JC,Chiesa MA et al. Free spermidine and spermine content in Lotus glaber under long-term salt stress. Plant Sci,2005,1 68: 541-546.
[40]  田秀丽,施国新,徐君等. Cr6+ 胁迫对水花生愈伤组织多胺代谢的影响. 湖泊科学,2 011,2 3(6): 955-960.
[41]  王红霞,胡金朝,施国新等. 外源多胺对铜胁迫下水鳖叶片多胺代谢、抗氧化系统和矿质营养元素的影响. 生态学 报,2 010, 30(10): 2784-2792.
[42]  Broadley MR,White PJ,Hammond JP et al. Zinc in plants. New Phytol,2007,1 73: 677-702.
[43]  Akcay H,Oguz A,Karapire C. Study of heavy metal pollution and speciation in Buyak Menderes and Gediz river sediments. Water Res,2003,37: 813-822.
[44]  Kar D,Sur P,Mandal SK,Saha T et al. Assessment of heavy metal pollution in surface water. Int J Environ Sci Tech, 2008,5: 119-124.
[45]  Aravind P,Prasad MNV. Zinc protects chloroplasts and associated photochemical functions in cadmium exposed Ceratophyllum demersum L. a freshwater macrophyte. Plant Sci,2004,1 66: 1321-1327.
[46]  Yang H,Shi G,Wang H et al. Involvement of polyamines in adaptation of Potamogeton crispus L. to cadmium stress. Aquat Toxicol,2010, 100: 282-288.
[47]  Martin-Tanguy J. Metabolism and function of polyamines in plants: recent development (new approaches). Plant Growth Regul,2001,34: 135-148.
[48]  Walters DR. Polyamines and plant disease. Phytochemistry,2003,64: 97-107.
[49]  Alcázar R,Altabella T,Marco F et al. Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta,2010, 231: 1237-1249.
[50]  Groppa MD,Tomaro ML,Benavides MP. Polyamines and heavy metal stress: the antioxidant behavior of spermine in cadmium-and copper-treated wheat leaves. Biometals,2007,2 0: 185-195.
[51]  Xu X,Shi G,Ding C et al. Regulation of exogenous spermidine on the reactive oxygen species level and polyamine metabolism in Alternanthera philoxeroides (Mart.) Griseb under copper stress. Plant Growth Regul,2011,63: 251-258.
[52]  Slocum RD,Furey MG III. Electron-microscopic cytochemical localization of diamine and polyamine oxidases in pea and maize tissues. Planta,1991,183: 443-450.
[53]  Borrell A,Culia?ez-Macia FA,Altabella T et al. Arginine decarboxylase is localized in chloroplasts. Plant Physiol, 1995,109: 771-776.
[54]  Walker MA,Ellis BE,Chapple CCS et al. Subcellular localization of amines and activities of their biosynthetic enzymes in p-fluorophenylalanine resistant and wild-type tobacco cell cultures. Plant Physiol,1987,85: 78-81.
[55]  Zhao J,Shi G,Yuan Q. Polyamines content and physiological and biochemical responses to ladder concentration of nickel stress in Hydrocharis dubia (Bl.) backer leaves. Biometals,2008,2 1: 665-674.
[56]  Ding C,Shi G,Xu X et al. Effect of exogenous spermidine on polyamine metabolism in water hyacinth leaves under mercury stress. Plant Growth Regul,2010, 60: 61-67.
[57]  Liu HP,Zhu ZX,Liu TX et al. Effect of osmotic stress on the kinds,forms and levels of polyamines in wheat coleoptiles. Journal of Plant Physiology and Molecular Biology,2006,3 2(3): 293-299.
[58]  Dondini L,Bonazzi S,Duca SD et al. Acclimation of chloroplast transglutaminase to high NaCl concentration in a polyamine-deficient variant strain of Dunaliella salina and in its wild type. J Plant Physiol,2001,1 58: 185-197.
[59]  Roussos PA,Pontikis CA. Changes of free,soluble conjugated and bound polyamine titers of jojoba explants under sodium chloride salinity in vitro. J Plant Physiol,2007,1 64: 895-903.
[60]  Górecka TK,Cvikrová M,Kowalska U et al. The impact of Cu treatment on phenolic and polyamine levels in plant material regenerated from embryos obtained in anther culture of carrot. Plant Physiol Bioch,2007,4 5: 54-61.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133