全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
湖泊科学  2013 

后生浮游动物摄食对太湖夏季微囊藻水华形成的作用

DOI: 10.18307/2013.0314

Keywords: 后生浮游动物,摄食,太湖,蓝藻,微囊藻水华

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了了解后生浮游动物的摄食作用在太湖夏季微囊藻水华形成中的作用,2009年7月15日至8月14日取太湖梅梁湾湖水开展了后生浮游动物对微囊藻水华形成作用的野外模拟实验.实验期间,未过滤掉后生浮游动物的对照组出现了漂浮在水面、肉眼可见的微囊藻水华,而过滤掉后生浮游动物的实验组没有出现微囊藻水华.结果显示,对照组整个实验期间都有后生浮游动物存在,共发现了9种后生浮游动物;而实验组在实验第6d发现有后生浮游动物出现,整个实验期间共发现了3种后生浮游动物.浮游动物生物多样性分析显示对照组显著高于实验组.实验后期(21~30d),对照组微囊藻平均密度显著高于实验组.整个实验期间,惠氏微囊藻(Microcystiswesenbergii)和水华微囊藻(Microcystisflos-aquae)密度均显著高于实验组,且惠氏微囊藻密度占对照组微囊藻总密度的60.79%.研究结果表明,太湖夏季后生浮游动物摄食并不能控制太湖蓝藻水华,相反,后生浮游动物特别是大型浮游动物能促进蓝藻水华的形成.同时表明,后生浮游动物群落结构可能是影响微囊藻水华形成的重要因素.

References

[1]  Chen YW,Qin BQ,Teubner K et al. Long-term dynamics of phytoplankton assemblages: Microcystis-domination in Lake Taihu,a large shallow lake in China. Journal of Plankton Research,2003,2 5(4): 445-453.
[2]  Flores-Burgos J,Sarma SSS,Nandini S. Effect of single species or mixed algal (Chlorella vulgaris and Scenedesmus acutus) diets on the life table demography of Brachionus calyciflorus and Brachionus patulus (Rotifera: Brachionidae). Acta Hydrochimica et Hydrobiologica,2005, 33(6): 614-621.
[3]  Kim HW,Hwang SJ,Joo GJ. Zooplankton grazing on bacteria and phytoplankton in a regulated large river (Nakdong River, Korea). Journal of Plankton Research,2000,2 2(8): 1559-1577.
[4]  Modenutti B,Queimaliňos C,Balseiro E et al. Impact of different zooplankton structures on the microbial food web of a South Andean oligotrophic lake. Acta Oecologica,2003,2 4: 289-298.
[5]  Robert JR,Uwe K. Effects of a filter-feeding fish [silver carp,Hypophthalmichthys molitrix (Val.)]on phyto-zooplankton in a mesotrophic reservoir: results from an enclosure experiment. Freshwater Biology,2002, 47(12): 2337-2344.
[6]  Brooks JL,Dodson SI. Predation,body size,and composition of plankton. Science,1965,1 50(3692): 28-35.
[7]  DeMott WR. Relations between filter mesh-size,feeding mode,and capture efficiency for cladocerans feeding on ultrafine particles. Arch Hydrobiol Beth,1985,2: 125-134.
[8]  DeMott WR. Feeding selectivities and relative ingestion rates of Daphnia and Bosmina. Limnol &Oceanogr,1982,27: 518-527.
[9]  Lehman JT. Release and cycling of nutrients between planktonic algae and herbivores. Limnol &Oceanogr,1980, 25: 620-632.
[10]  Elser JJ,Hassett RP. A stoichiometric analysis of the zooplankton-phytoplankton interaction in marine and freshwater ecosystems. Nature,1994, 370: 211-213.
[11]  George DG,Reynolds CS. Zooplankton-phytoplankton interactions: The case for refining methods,measurements and models. Aqua Ecol,1997,3 1: 59-71.
[12]  Haney JF. Field studies on zooplankton-cyanobacteria interactions. N Zeland J Mar Freshwater Res,1987,2 1: 467-475.
[13]  Lampert W. Laboratory studies on zooplankton-cyanobacteria interactions. N Zeland J Mar Freshwater Res,1987, 21: 483-490.
[14]  Brett MT,Müller-Navarra DC. The role of highly unsaturated fatty acids in aquatic food-web processes. Freshwater Biol, 1997, 38: 483-500.
[15]  Burns CW. Planktonic interactions with an austral bias: Implications for biomanipulation. Lakes and Reservoirs: Research and Management,1998,(3): 95-104.
[16]  Drenner RW,Hambright KD. Biomanipulation of fish assemblages as a lake restoration technique. Archiv für Hydrobiologie, 1999,1 46: 129-165.
[17]  Burkert U,Hyenstrand P,Drakare S et al. Effects of the mixotrophic flagellate Ochromonas sp. on colony formation in Microcystis aeruginosa. Aquatic Ecology,2001,3 5: 9-17.
[18]  Jang MH,Ha K,Joo GJ et al. Toxin production of cyanobacteria is increased by exposure to zooplankton. Freshwater Biology, 2003, 48: 1540-1550.
[19]  王家辑. 中国淡水轮虫志. 北京: 科学出版社,1 961.
[20]  诸葛燕. 中国典型地带轮虫的研究[学位论文]. 武汉: 中国科学院水生生物研究所,1 997.
[21]  更多...
[22]  沈嘉瑞. 中国动物志节肢动物门甲壳纲淡水桡足类. 北京: 科学出版社,1 979.
[23]  蒋燮治,堵南山. 中国动物志(淡水枝角类). 北京: 科学出版社,1 979.
[24]  Shapiro J,Wright DI. Lake restoration by biomanipulation: Round Lake,Minnesota,the first two years. Freshwater Biol, 1984,1 4: 371-383.
[25]  Carvalho L. Top-down control of phytoplankton in a shallow hypertrophic lake: Little Mere (England). Hydrobiologia, 1994,2 75: 53-63.
[26]  Burns CW. The relationship between body size of filter-feeding Cladacera and the maximum size of particle ingested. Limnol &Oceanogr,1968, 13: 675-678.
[27]  Porter KG. The plant-animal interf ace in freshwater ecosystems. American Scientist,1977,6 5: 159-170.
[28]  Gliwicz ZM. Food size selection and seasonal succession of filter feeding zooplankton in a eutrophic lake. Ekologia Polska, 1977, 25: 179-225.
[29]  Jacobs J. Quantitative measurement of food selection-a modification of the forage ratio and Ivlev\'s Electivity Index. Oecologia, 1974,1 4: 413-417.
[30]  Richman S,Dodson SI. The effect of food quality on feeding and respiration by Daphnia and Diaptomus. Limnol &Oceanogr, 1983, 28: 948-956.
[31]  Cowles TJ,Olson RJ,Chisholm SW. Food selection by copepods: discrimination on the basis of food quality. Marine Biology, 1988,1 00: 41-49.
[32]  DeMott WR. The role of taste in food selection by freshwater zooplankton. Oecologia,1986,6 9: 334-340.
[33]  Huntley M,Sykes P,Rohan S et al. Chemically-mediated rejection of dinoflagellate prey by the copepods calanus pacifi cus and paracalanus parvus: mechanism,occurrence and significance. Mar Ecol Prog Ser,1986,2 8: 105-120.
[34]  Wilson AE,Sarnelle O,Tillmanns AR. Effects of cyanobacterial toxicity and morphology on the population growth of freshwater zooplankton: Meta-analyses of laboratory experi ments. Limnol &Oceanogr,2006, 51: 1915-1924.
[35]  Geller W,Muller H. The filtration apparatus of cladocera: Filter mesh-sizes and their implications on food selectivity. Oecologia (Berlin),1981,4 9: 316-321.
[36]  Dawidowicz P. Effectiveness of phytoplankton control by large-bodied and small-bodied zooplankton. Hydrobiologia, 1990,2 00: 43-47.
[37]  Edgar NB,Green JD. Calanoid copepod grazing on phytoplankton: seasonal experiments on natural communities. Hydrobiologia, 1994, 273: 147-161.
[38]  Robats RD,Zohary T. Microcystis aeruginosa and underwater light attenuation on a hypertrophic lake (Hartbeespoort Dam,South Africa). J Ecology,1984, 72: 1001-1017.
[39]  Sterner RW. The role of grazers in phytoplankton succession. In: Sommer U ed. Plankton ecology succesion in plankton communities. Berlin: Springer-Verlag,1989: 107-169.
[40]  Fulton RS,Paerl HW. Toxic and inhibitory effects of the blue-green alga Microcystis aeruginosa on herbivorous zooplankton. J Plankton Res,1987,9: 837-855.
[41]  Paerl HW,Fulton RS,Moisander PH et al. Harmful freshwater algal blooms,with an emphasis on cyanobacteria. The Scientific World Journal,2001,1: 76-113.
[42]  杨桂军,秦伯强,高光等. 角突网纹溞在太湖微囊藻群体形成中的作用. 湖泊科学,2 009,2 1(4): 495-501.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133