全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
湖泊科学  2013 

菹草(Potamogetoncrispus)附着物对水体氮、磷负荷的响应

DOI: 10.18307/2013.0308

Keywords: 富营养化,氮、磷负荷,沉水植物,附着物,菹草

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过实验模拟了10组氮、磷负荷对菹草(Potamogetoncrispus)生长期和衰亡期茎叶附着物的影响.结果显示:随着水体氮、磷浓度的升高,菹草附着物的叶绿素a(Chl.a)含量、附着有机物量、附着无机物量和附着物总量均增加,在氮、磷浓度最高的T10组(总氮12.0mg/L,总磷1.0mg/L),附着物的总量达到高峰,附着物的Chl.a含量为2.005~4.765mg/g(DW),附着有机物的量为29.027~94.886mg/g(DW),附着无机物的量为176.881~397.750mg/g(DW),附着物总量为205.909~492.636mg/g(DW).在菹草的快速生长期、稳定期和衰亡期,附着物的Chl.a含量、附着有机物量、附着无机物量和附着物总量均存在显著差异,均表现为衰亡期>稳定期>快速生长期,且在各营养盐浓度下均存在这一趋势.菹草衰亡期附着物的Chl.a含量、附着有机物量、附着无机物量和附着物总量分别为稳定期的1.046~1.826、1.046~1.638、1.029~1.858和1.106~1.717倍,为快速生长期的2.324~4.059、2.323~3.640、2.101~3.792和2.280~3.584倍.结果表明水体氮、磷负荷的增加促进了菹草茎叶附着物的生长和积累,加速了沉水植物衰亡.

References

[1]  Baker JH,Orr DR. Distribution of epiphytic bacteria on freshwater plants. Journal of Ecology,1986,74(1): 155-165.
[2]  Phillips GL,Eminson D,Moss B. A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters. Aquatic Botany,1978,4(1): 103-126.
[3]  Kemp WM,Boynton WR,Twilley RR et al. The decline of submerged vascular plants in upper Chesapeake Bay: Summary of results concerning possible causes. Marine Technology Society Journal,1983,17(2): 78-89.
[4]  Sand-Jensen K,Riis T,Vestergaard O et al. Macrophyte decline in Danish lakes and streams over the past 100 years. Journal of Ecology,2000,88(6): 1030-1040.
[5]  Twilley RR,Kemp WM,Staver KW et al. Nutrient enrichment of estuarine submersed vascular plant communities. Part 1. Algal growth and effects on production of plants and associated communities. Marine Ecology-Progress Series,1985,23 (5): 179-191.
[6]  Sand-Jensen K,Revsbech NP. Photosynthesis and light adaptation in epiphyte-macrophyte associations measured by oxygen microelectrodes. Limnology and Oceanography,1987,32(2): 452-457.
[7]  Sand-Jensen K. Epiphyte shading: its role in resulting depth distribution of submerged aquatic macrophytes. Folia Geobotanica and Phytotaxonomica,1990,25: 315-320.
[8]  MacLeod NA,Barton DR. Effects of light intensity,water velocity,and species composition on carbon and nitrogen stable isotope ratios in periphyton. Canadian Journal of Fisheries and Aquatic Sciences,1998,55(8): 1919-1925.
[9]  Asaeda T,Sultana M,Manatunge J et al. The effect of epiphytic algae on the growth and production of Potamogeton perfoliatus L. in two light conditions. Environmental and Experimental Botany,2004,52(3): 225-238.
[10]  秦伯强,宋玉芝,高光. 附着生物在浅水富营养化湖泊藻-草型生态系统转化过程中的作用. 中国科学: C 辑: 生命 科学, 2006, 36(3): 283-288.
[11]  宋玉芝,秦伯强,高光. 附着生物对太湖沉水植物影响的初步研究. 应用生态学报,2 007,1 8(4): 928-932.
[12]  宋玉芝,黄瑾,秦伯强. 附着生物对太湖常见的两种沉水植物快速光曲线的影响. 湖泊科学,2010,22 (6): 935-940.
[13]  Morin JON,Kimball KD. Relationship of macrophyte-mediated changes in the water column to periphyton composition and abundance. Freshwater Biology,1983,13(5): 403-414.
[14]  Pip E,Robinson G. A comparison of algal periphyton composition on eleven species of submerged macrophytes. Aquatic Ecology, 1984,18(2): 109-118.
[15]  Blindow I. The composition and density of epiphyton on several species of submerged macrophytes: The neutral substrate hypothesis tested. Aquatic Botany,1987,29(2): 157-168.
[16]  Rimes CA,Goulder R. Temporal variation in density of epiphytic bacteria on submerged vegetation in a calcareous stream. Letters in Applied Microbiology,1986,3(1): 17-21.
[17]  Pan Y,Stevenson RJ,Vaithiyanathan P et al. Changes in algal assemblages along observed and experimental phosphorus gradients in a subtropical wetland. U. S. A. Freshwater Biology,2000,44(2): 339-353.
[18]  Dijk GM. Dynamics and attenuation characteristics of periphyton upon artificial substratum under various light conditions and some additional observations on periphyton upon Potamogeton pectinatus L.. Hydrobiologia,1993,252 (2): 143-161.
[19]  国家环境保护总局《水和废水监测分析方法》编委会. 水和废水监测分析方法: 第4 版. 北京: 中国环境科学出版 社,2 002: 243-284.
[20]  ?zkan K,Jeppesen E,Johansson LS et al. The response of periphyton and submerged macrophytes to nitrogen and phosphorus loading in shallow warm lakes: a mesocosm experiment. Freshwater Biology,2010,55(2): 463-475.
[21]  Luttenton MR. Response of a lentic periphyton community to nutrient enrichment at low N: P ratios. Journal of Phycology, 2006,42(5): 1007-1015.
[22]  更多...
[23]  Liboriussen L,Jeppesen E. Structure,biomass,production and depth distribution of periphyton on artificial substratum in shallow lakes with contrasting nutrient concentrations. Freshwater Biology,2006,51(1): 95-109.
[24]  Chen C,Yin D,Yu B et al. Effect of epiphytic algae on photosynthetic function of Potamogeton crispus. Journal of Freshwater Ecology,2007,22(3): 411-420.
[25]  Rodusky AJ,Steinmann AD,East TL et al. Periphyton nutrient limitation and other potential growth-controlling factors in Lake Okeeehobee,USA. Hydrobiologia,2001,448(1/2/3): 27-39.
[26]  McCormick PV,oDell MB. Quantifying periphyton responses to phosphorus in the Florida Everglades: a synoptic-experimental approach. Journal of the North American Benthological Society,1996,15(4): 450-468.
[27]  Irfanullah HM,Moss R. Factors influencing the return of submerged plants to a clear-water,shallow temperate lake. Aquatic Botany,2004,80(3): 177-191.
[28]  Cao T,Ni LY,Xie P. Acute biochemical response of a submersed macrophyte,Potamogeton crispus L.,to hionium in an aquarium experiment. Journal of Freshwater Ecology,2004,19(2): 279-284.
[29]  Sagrario G,Maria A,Jeppesen E et al. Does high nitrogen loading prevent clear-water conditions in shallow lake at moderately high phosphorus concentrations? Freshwater Biology,2005,50(1): 27-41.
[30]  Jeppesen E,Sondergaard M,Meerhoff M. Shallow lake restoration by nutrient loading reduction some recent findings and challenges ahead. Hydrobiologia,2007,196(5): 239-252.
[31]  由文辉. 淀山湖着生藻类群落结构与数量特征. 环境科学,1 999,2 0(5): 59-62.
[32]  苏胜齐,沈盎绿,姚维志. 菹草着生藻类的群落结构与数量特征初步研究. 西南农业大学学报,2002,24 (3): 255-258.
[33]  Havens KE,Hauxwell J,Tyler AC et al. Complex interactions between autotrophs in shallow marine and freshwater ecosystems: implications for community responses to nutrient stress. Environmental Pollution,2001,113(1): 95-107.
[34]  Sand-Jensen K. Effect of epiphytes on eelgrass photosynthesis. Aquatic Botany,1977,3(1): 55-63.
[35]  朱端卫,朱红,倪玲珊等. 沉水植物驱动的水环境钙泵与水体磷循环的关系. 湖泊科学, 2012, 24(3): 355-361.
[36]  Schreiber L,krimm U,Knoll D et al. Plant-microbe interactions: identification of epiphytic bacteria and their ability to alter leaf surface permeability. New Phytologist,2005,166(2): 589-594.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133