全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
湖泊科学  2013 

光照和黑暗条件下苦草(Vallisnerianatans)和穗花狐尾藻(Myriophyllumspicatum)对铵态氮的吸收

DOI: 10.18307/2013.0217

Keywords: 苦草,穗花狐尾藻,光强,铵态氮,吸收速率

Full-Text   Cite this paper   Add to My Lib

Abstract:

在室内模拟实验中,研究了光照(50μmol/(m2·s))和黑暗条件下苦草(Vallisnerianatans)和穗花狐尾藻(Myrio-phyllumspicatum)对铵态氮(NH4+-N)的吸收速率与去除效果.结果表明,随着外源铵态氮浓度(0,0.01,0.1,1和10mg/LNH4+-N)的增加,苦草和穗花狐尾藻对铵态氮的吸收速率都是先增加后又逐渐降低,在外源铵态氮浓度为1mg/L时吸收速率达到最大.同种植物在光照条件下对铵态氮的吸收率不低于黑暗条件下的吸收率;相同光强条件下穗花狐尾藻对铵态氮的吸收率不低于苦草的吸收率.在黑暗条件下,在外源铵态氮浓度为1mg/L时,穗花狐尾藻对铵的吸收速率是苦草的2.42倍;在光照条件下,在外源铵态氮浓度为1和10mg/L时,穗花狐尾藻对铵态氮的吸收速率分别是苦草的2.47和1.79倍.因此,在富营养湖泊治理过程中,在沉水植物可耐受铵态氮浓度范围内,可以优先考虑把穗花狐尾藻作为植物修复的先锋物种.

References

[1]  Maria GS,Erik J,Joan G et al. Does high nitrogen loading prevent clear-water conditions in shallow lakes at moderately high phosphorus concentrations? Freshwater Biology,2005,50(1): 27-41.
[2]  Genevieve MC,Duthie HC,Taylor WD. Models of aquatic plant productivity: a review of the factors that influence growth. Aquatic Botany,1997,59(3/4): 195-215.
[3]  Farnsworth-Lee,Baker LA. Conceptual model of aquatic plant decay and ammonia toxicity for shallow lakes. Environmental Engineering,2000,126(3): 199-207.
[4]  Nichols DS,Keeney DR. Nitrogen nutrition of Myriophyllum spicatum: uptake and translocation of 15N by shoots and roots. Freshwater Biology,1976,6(2): 145-154.
[5]  Cao T,Xie P,Ni LY et al. The role of NH4+ toxicity in the decline of the submersed macrophyte Vallisneria natans in lakes of the Yangtze River basin,China. Marine and Freshwater Research,2007,58(6): 581-587.
[6]  Jampeetong A,Brix H. Effects of NH4+ concentration on growth,morphology and NH4+ uptake kinetics of Salvinia natans. Ecological Engineering,2009,35(5): 695-702.
[7]  Britto DT,Kronzucker HJ. NH4+ toxicity in higher plants: a critical review. Journal of Plant Physiology,2002,159(6): 567-584.
[8]  Squires MM,Lesack LFW,Huebert D. The influence of water transparency on the distributionand abundance of macrophytes among lakes of the Mackenzie Delta,Western Canadian Arctic. Freshwater Biology,2002,47(11): 2123-2135.
[9]  Cao T,Xie P,Ni LY et al. Carbon and nitrogen metabolism of an eutrophication tolerative macrophyte,Potamogeton crispus, under NH4+ stress and low light availability. Environmental and Experimental Botany,2009,66(1): 74-78.
[10]  Goss RM,Baird JH,Kelm SL et al. Trinexapac-ethyl and nitrogen effects on creeping bentgrass grown under reduced light conditions. Crop Science,2002,42(2): 472-479.
[11]  Riis T,Sand-Jensen K,Vestergaard O. Plant communities in lowland Danish streams: species composition and environmental factors. Aquatic Botany,2000,66(4): 255-272.
[12]  Maine MA,Sune N,Hadad H et al. Nutrient and metal removal in a constructed wetland for wastewater treatment from a metallurgic industry. Ecological Engineering,2006,26(4): 341-347.
[13]  Nahlik AM,Mitsch WJ. Tropical treatment wetlands dominated by free-floating macrophytes for water quality improvement in Costa Rica. Ecological Engineering,2006,28(3): 246-257.
[14]  更多...
[15]  Tylova E,Steinbachova L,Votrubova O et al. Different sensitivity of Phragmites australis and Glyceria maxima to high availability of ammonium-N. Aquatic Botany,2008,88(2): 93-98.
[16]  Hecht U,Mohr H. Factors controlling nitrate and ammonium accumulation in mustard (Sinapis alba) seedlings. Physiol Plant,1990,78(3): 379-387.
[17]  金相灿,楚建周,王圣瑞. 水体氮浓度、形态对黑藻和狐尾藻光合特征的影响. 应用与环境生物学报,2007, 13(2): 200-204.
[18]  Chambers PA,Kalff J. Light and nutrients in the control of aquatic plant community structure. I. In situ experiments. Journal of Ecology,1987,75(3): 611-619.
[19]  Wetzel. Structure and productivity of aquatic ecosystems. In: Limnology: 2ed. CBS College Publishing,1983: 134-156, 519-590.
[20]  Best EPT,Buzzeli CP,Bartell SM et al. Modeling submersed macrophyte growth in relation to underwater light climate: modeling approaches and application potential. Hydrobiologia,2001,444(1/2/3): 43-70.
[21]  Barko JW,Smart RM. Comparative influences of light and temperature on the growth and metabolism of selected submersed freshwater macrophytes. Ecological Monographs, 1981,51(2): 219-235.
[22]  Barko JW,Gunnison D,Carpenter SR. Sediment interactions with submersed macrophyte growth and community dynamics. Aquatic Botany,1991,41(1/2/3): 41-65.
[23]  沈耀良,王美敬,李勇等. 沉水植物修复受污水体净化效能的研究. 苏州科技学院学报: 工程技术版,2005, 18(4): 1-4.
[24]  许秋瑾,金相灿,王兴民等. 氨氮与镉单一和复合作用对沉水植物穗花狐尾藻和轮叶黑藻光合能力的影响. 环境 科学,2006,27(10): 1974-1978.
[25]  李强,王国祥,王文林等. 悬浮泥沙水体对穗花狐尾藻(Myriophyllum spicatum L.) 光合荧光特性的影响. 湖泊 科学,2007,19(2): 197-203.
[26]  Rogers KH,Breen PF,Chick AJ. Nitrogen removal in experimental wetland treatment system: evidence for the role of aquatic plants. Res Journal of WPCF,1991,63(7): 934-941.
[27]  Jiang CL,Fan XQ,Zhang YB. Absorption and prevention of secondary pollution of N and P by emergent plants in farmland ditch. Journal of China Environmental Science, 2004,24(6): 702-706.
[28]  Hutchinson GE. The chemical ecology of three species of Myriophyllum (Angiospermae Haloragaceae). Limnology and Oceanography, 1970,15(1): 1-5.
[29]  Tremolieres M,Carbiener D,Carbiener R et al. Zones inondables,végétation et qualité de l\' eau en milieu alluvial Rhenan: l\'le de Rhinau,un site de recherches intégrées. Ecological Bulletins,1991,22(3/4): 317-336.
[30]  曹特,倪乐意. 金鱼藻抗氧化酶对水体无机氮升高的响应. 水生生物学报,2004,28(3): 299-302.
[31]  Ni LY. Effects of water column nutrient enrichment on the growth of Potamogeton macckianus A. Been. Journal of Aquatic Plant Management,2001,39: 83-87.
[32]  Arts GHP. Deterioration of atlantic soft water macrophyte communities by acidification,eutrophication and alkalinisation. Aquatic Botany,2002,73: 373-393.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133