全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
湖泊科学  2013 

沉水植物附植生物群落生态学研究进展

DOI: 10.18307/2013.0201

Keywords: 附植生物群落,群落生态学,沉水植物,附生藻类,营养物质转化

Full-Text   Cite this paper   Add to My Lib

Abstract:

在高等水生植物表面经常附着生长着藻类、真菌和细菌等,这些有机群体组成附植生物群落,在大中型浅水湖泊中普遍存在.附植生物群落具有特定的物种组成和空间结构,并随季节推移和沉水植物生长表现出一定的动态变化特征.附植生物群落与宿主植物及周围水体环境联系密切,不仅能够表征水体营养盐、光照、温度等环境因子特征,与沉水植物、食草动物、浮游植物等水生生物类群也存在不同的相互作用.水生生态系统中,附植生物群落参与水体营养物质转化,在草-藻型湖泊生态系统的相互转化过程中起重要作用;其较高的初级生产力作为水生动物重要的食物来源,增加了食物网的多样性;同时,附植生物群落因其独特的生理生态特征正逐渐被应用于水质净化和水环境质量监测.本文在综述近年来附植生物群落研究进展的基础上,分析了附植生物群落的组成结构和动态变化特征,阐述了附植生物群落在水生生态系统中的功能,可为湖泊富营养化治理,尤其是沉水植被的生态修复和管理提供科学依据.

References

[1]  O\'Reilly CM. Seasonal dynamics of periphyton in a large tropical lake. Hydrobiologia,2006,553(1): 293-301.
[2]  Mohamed ZA,Al Shehri AM. Differential responses of epiphytic and planktonic toxic cyanobacteria to allelopathic substances of the submerged macrophyte Stratiotes aloides. International Review of Hydrobiology,2010,95(3): 224-234.
[3]  James CJ,Eaton JW,Hardwick K. Responses of three invasive aquatic macrophytes to nutrient enrichment do not explain their observed field displacements. Aquatic Botany,2006,84(4): 347-353.
[4]  Rodusky AJ,Steinman AD,East TL et al. Periphyton nutrients limitation and other potential growth controlling factors in Lake Okeechobee. Hydrobiologia,2001,448(1/2/3): 27-39.
[5]  Schneider SC,Lindstr?m EA. The periphyton index of trophic status PIT: a new eutrophication metric based on non-diato maceous benthic algae in Nordic rivers. Hydrobiologia,2011,665: 143-155.
[6]  宋玉芝,秦伯强,高光等. 附着生物对沉水植物伊乐藻生长的研究. 生态环境,2007,16(6): 1643-1647.
[7]  Liboriussen L,Jeppesen E. Temporal dynamics in epipelic,pelagic and epiphytic algal production in a clear and a turbid shallow lake. Freshwater Biology,2003,48(3): 418-431.
[8]  陈重军,韩志英,朱荫湄等. 周丛藻类及其在水质净化中的应用. 应用生态学报,2009,20(11): 2820-2826.
[9]  Dempster PW,Beveridge MCM,Baid DJ. Herbivory in tilapia Oreoehromis niloticus: a comparison of feeding rates on phytoplankton and periphyton. Joumal of Fish Binfogy,1993,43(3): 385-392.
[10]  李宽意,刘正文,李传红等. 太湖椭圆萝卜螺的食物来源分析. 湖泊科学,2008,20(3): 339-343.
[11]  Stevenson RJ. How currents on different sides of substrates in streams affect mechanisms of benthic algal accumulation. Internationale Revue der gesamten Hydrobiologia,1984,69(2): 241-262.
[12]  Steven TR,Stevenson RJ. Response of periphytic algae to gradients in nitrogen and phosphorus in streamside mesocosms. Hydrobiologia,2006,561(1): 131-147.
[13]  Baffico GD. Variations in the periphytic community structure and dynamics of Lake Nahuel Huapi (Patagonia,Argentina). Hydrobiologia,2001,455: 79-85.
[14]  Nayar S,Goh BPL,Chou LM. Settlement of marine periphytic algae in a tropical estuary. Estuarine,Coastal and Shelf Science,2005,64(23): 241-248.
[15]  Round FE. Diatoms in river water-monitoring studies. Journal of Applied Phycology,1991,3: 129-145.
[16]  Winter JG,Duthie HC. Stream epilithic,epipelic and epiphytic diatoms: habitat fidelity and use in Biomonitoring. Aquatic Ecology,2000,34: 345-353.
[17]  Greenwood JL,Lowe RL. The effects of pH on a periphyton community in an acidic wetland,USA. Hydrobiologia,2006, 561: 71-82.
[18]  Roberts E,Kroker J,K?rner S et al. The role of periphyton during the re-colonization of a shallow lake with submerged macrophytes. Hydrobiologia,2003,506/507/508/509: 525-530.
[19]  Reet L,Markku R. The composition and density of epiphyton on some macrophyte species in the partly meromictic Lake Verevi. Hydrobiologia,2005,547: 137-150.
[20]  Cattaneo A. Grazing on epiphytes. Limnol & Oceanogr,1983,28(l): 124-132.
[21]  Steinman AD. Effects of grazers on freshwater benthic alage. In: Stevenson RJ,Bothwell ML,Lowe RL eds. Algal ecology, freshwater benthic ecosystem. San Diesgo: Acad Press,1996: 341-373.
[22]  Elwood JW,Nelson DJ. Periphyton production and grazing rates in a stream measured with a 32 P material balance method. Oikos,1972,23(3): 295-303.
[23]  Hunter RD. Effects of grazing on the quantity and quality of freshwater Aufwuchs. Hydrobiologia,1980,69: 251-259.
[24]  Porter KG. The plant-animal interface in freshwater ecosystems. American Scientist,1977,65(2): 159-170.
[25]  Gregory SV. Plant-herbivore interactions in stream systems. In: Barnes JR,Minshall GW eds. Stream ecology,application and testing of general ecological theory. New York: Plenum Press,1983: 221-223.
[26]  Dodds WK. The role of periphyton in phosphorus retention in shallow freshwater aquatic systems. Journal of Phycology, 2003,39(5): 840-849.
[27]  Poulickova A,Hasler P,Lysakova M et al. The ecology of freshwater epipelic algae: an update. Phycologia,2008,47 (5): 437-450.
[28]  念宇,韩耀宗,杨再福. 不同基质上着生生物群落生态学特性比较研究. 环境科技,2009,2(5): 14-17.
[29]  卡尔夫(Jacob Kalff) 著. 古滨河,刘正文,李宽意等译. 湖沼学: 内陆水生态系统. 北京: 高等教育出版社,2011: 443-445.
[30]  张景平,黄小平. 海草与其附生藻类之间的相互作用. 生态学杂志,2008,27(10): 1785-1790.
[31]  Allanson BR. The fine structure of the periphyton of Chara sp. and Potamogeton natans from Wytham Pond,Oxford,and its significance to the macrophyte-periphyton metabolic model of R. G. Wetzel and H. L. Allen. Freshwater Biology,1973, 3(6): 535-542.
[32]  Br?nmark C. Interactions between epiphytes,macrophytes and freshwater snails: a review. Journal of Molluscan Studies, 1989,55(2): 299-311.
[33]  Jaschinski SD,Brepohl C. The trophic importance of epiphytic algae in a freshwater macrophyte system (Potamogeton perfoliatus L.): stable isotope and fatty acid analyses. Aquatic Sciences,2010,73(1): 91-101.
[34]  N?ges T,Luup H,Feldmann T. Primary production of aquatic macrophytes and their epiphytes in two shallow lakes (Peipsi and V?rtsj?rv) in Estonia. Aquatic Ecology,2009,44(1): 83-92.
[35]  姚洁,刘正文. 罗非鱼对附着藻类和浮游植物影响的初步研究. 生态科学,2010,29(2): 147-151.
[36]  ács é,Kiss KT. Investigation of periphytic algae in the Danube at G?d (1669 river km,Hungary). Arch Hydrobiologia, 1991,62: 47-67.
[37]  刘玉超. 罗非鱼-附着藻-沉水植物相互关系研究进展. 生态环境学报,2010,19(10): 2511-2514.
[38]  苏胜齐,沈盎绿,姚维志. 菹草着生藻类的群落结构与数量特征初步研究. 西南农业大学学报,2002,24(3): 255-258.
[39]  袁信芳,施华宏,王晓蓉. 太湖着生藻类的时空分布特征. 农业环境科学学报,2006,25(4): 1035-1040.
[40]  Haydee P,Alicia V,Guillermo T. Periphyton on artificial substrata from three lakes of different trophic status at Hope Bay (Antarctica). Polar Biol,2002,25: 169-179.
[41]  Roufa JM,Phang SM,Ambak MA. Depth distribution and ecological preferences of periphytic algae in Kenyir Lake,the largest tropical reservoir of Malaysia. Chinese Journal of Oceanology and Limnology,2010,28(4): 856-867.
[42]  顾詠洁,王秀芝,廖祖荷. 利用着生生物群落动态变化监测水质的研究. 华东师范大学学报: 自然科学版,2005, (4): 87-94.
[43]  冯佳,谢树莲. 汾河源头周丛藻类植物群落结构特征. 生态科学,2007,26(5): 408-414.
[44]  Magdalena T,Barbara PS,Agata ZW. Epiphytic algae on Stratiotes aloides L.,Potamogeton lucens L.,Ceratophyllum demersum L. and Chara spp. in a macrophyte-dominated lake. Oceanological and Hydrobiological Studies,2008,37(2): 51-53.
[45]  Roman AD,Ekelund NGA. The use of epiphyton and epilithon data as a base for calculating ecological indices in monitoring of eutrophication in lakes in central Sweden. The Science of the Total Environment,2000,248(1): 63-70.
[46]  Woodruff SI,House WA,Callow ME et al. The effects of biofilms on chemical processes in surficial sediments. Freshwater Biology,1999,41(1): 73-89.
[47]  宋玉芝,秦伯强,高光. 附着生物对富营养化水体氮磷的去除效果. 长江流域资源与环境,2009,18 (2): 180-184.
[48]  Sánchez ML,Pizarro H,Tell G et al. Relative importance of periphyton and phytoplankton in turbid and clear vegetated shallow lakes from the Pampa Plain (Argentina): a comparative experimental study. Hydrobiologia,2010,646 (1): 271-280.
[49]  Loeb SL. An in situ method for measuring the primary productivity and standing crop of the epilithic perphyton community in lentic systems. Limnol & Oceanogr,1981,26(2): 394-399.
[50]  Hiltneekorner S. Allelopathic inhibition of epiphytes by submerged macrophytes. Aquatic Botany,2006,85 (3): 252-256.
[51]  由文辉. 螺类与着生藻类的相互作用及其对沉水植物的影响. 生态学杂志,1999,18(3): 54-58.
[52]  宋玉芝,秦伯强,高光. 附着生物对太湖沉水植物影响的初步研究. 应用生态学报,2007,18(4): 928-932.
[53]  Zakaria AM,Abdulrahman MA. Microcystin production in epiphytic cyanobacteria on submerged macrophytes. Toxicon, 2010,55(7): 1346-1352.
[54]  秦伯强,宋玉芝,高光. 附着生物在浅水富营养化湖泊藻-草型生态系统转化过程中的作用. 中国科学,2006, 36(3): 283-288.
[55]  王朝晖,胡韧,谷阳光等. 珠江广州河段着生藻类的群落结构及其与水质的关系. 环境科学学报,2009,29 (7): 1510-1516.
[56]  Gottlieb AD,Richards JH,Gaiser EE. Comparative study of periphyton community structure in long and short-hydroperiod Everglades marshes. Hydrobiologia,2006,569(1): 195-207.
[57]  Uehlinger U,Robinson CT,Heiber M et al. The physico-chemical habitat template for periphyton in alpine glacial streams under a changing climate. Hydrobiologia,2009,657(1): 107-121.
[58]  Raeder U,Ruzicka J,Goos C. Characterization of the light attenuation by periphyton in lakes of different trophic state. Limnologica-Ecology and Management of Inland Waters,2010,40(1): 40-46.
[59]  更多...
[60]  Vanderstukken M,Mazzeo N,Colen WV et al. Biological control of phytoplankton by the subtropical submerged macrophytes Egeria densa and Potamogeton illinoensis: a mesocosm study. Freshwater Biology,2011,56(9): 1837-1849.
[61]  Erhard D,Gross EM. Allelopathic activity of Elodea canadensis and Elodea nuttallii against epiphytes and phytoplankton. Aquatic Botany,2006,85(3): 203-211.
[62]  Hilt S,Gross EM. Can allelopathically active submerged macrophytes stabilise clear-water states in shallow lakes? Basic and Applied Ecology,2008,9(4): 422-432.
[63]  沈韫芬. 武汉东湖周从原生动物生态. 水生生物学集刊,1980,7(1): 19-40.
[64]  魏祟德. 杭州西湖周丛原生动物的初步调查. 生态学杂志,1987,6(3): 27-29.
[65]  杨柳燕,徐家铸. 南京玄武湖周丛动物数量和生物量的季节变化. 湖泊科学,1993,5(3): 253-260.
[66]  由文辉. 淀山湖周丛生物群落的初步研究. 水生生物学报,1997,21(2): 114-122.
[67]  由文辉. 淀山湖着生藻类群落结构与数量特征. 环境科学,1999,20(5): 59-62.
[68]  宋玉芝,秦伯强,高光. 氮及氮磷比对附着藻类及浮游藻类的影响. 湖泊科学,2007,19(2): 125-130.
[69]  李博. 生态学. 北京: 高等教育出版社,2007: 117-118.
[70]  李振基,陈圣宾. 群落生态学. 北京: 气象出版社,2011: 2-3.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133