全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
湖泊科学  2013 

太湖草/藻型湖区沉积物-水界面环境特征差异

DOI: 10.18307/2013.0204

Keywords: 沉积物-水界面,草型湖区,藻型湖区,太湖

Full-Text   Cite this paper   Add to My Lib

Abstract:

在太湖草、藻型湖区进行冬、夏两季多点采样,分别对采样点的水环境特征、泥面以上5cm上覆水中营养盐以及沉积物的含水量、中值粒径、有机碳、氮、磷、金属元素和溶解氧进行测定.结果表明:夏季藻型湖区表层水体pH高于中、底层,冬季草型湖区各层水体pH高于藻型;草型湖区水体浊度夏季低于藻型,冬季反之;藻型湖区上覆水中的硝态氮和磷酸根浓度显著高于草型;草型湖区沉积物中含水量冬季显著高于夏季;草型湖区沉积物中总有机碳显著高于藻型;Fe、Zn、Ca、Pb、Na和K等元素在草、藻型湖区间差异显著;沉积物中溶解氧表现为冬季深于夏季,藻型深于草型的规律.

References

[1]  吴丰昌,万国江,蔡玉荣. 沉积物-水界面的生物地球化学作用. 地球科学进展,1996,11(2): 191-197.
[2]  Meyers PA,Ishiwatari R. Organic matter accumulation records in lake sediments. In: Lerman A,Imboden D,Gat J eds. Physics and chemistry of lakes. Berlin and Heidelberg: Springer-Verlag,1995: 279-328.
[3]  Vreca P. Carbon cycling at the sediment-water interface in a eutrophic mountain lake (Jezero na Planini pri Jezeru,Slovenia). Organic Geochemistry,2003,34: 671-680.
[4]  秦伯强,胡维平,高光等. 太湖沉积物悬浮的动力机制及内源释放的概念性模式. 科学通报,2003,48: 1822-1831.
[5]  Partheniades E. Unified view of wash load and bed material. ASCE J Hydraulics Div,1977,103: 1037-1050.
[6]  Wenzh?fer H,Holby O,Kohls O. Deep penetrating benthic oxygen profiles measured in situ by oxygen optodes. Deep-Sea ResearchⅠ,2001,48: 1741-1755.
[7]  Widdows J,Brinsley MD,Bowley N. A benthic annular flume for in situ measurement of suspension feeding biodeposition rates and erosion potential of intertidal cohesive sediments. Estuarine,Coastal and Shelf Science,1998,46: 27-38.
[8]  Kristensen E. Benthic fauna and biogeochemical processes in marine sediments: Microbial activities and fluxes. In: Blackburn TH,Sorensen J eds. Nitrogen cycling in coastal marine environments. New York: Wiley,1988: 275-299.
[9]  Michaud E,Desrosiers G,Mermillod-Blondin F et al. The functional group approach to bioturbation: II. The effects of the Macoma balthica community on fluxes of nutrients and dissolved organic carbon across the sediment-water interface. Journal of Experimental Marine Biology and Ecology,2006,337: 178-189.
[10]  Lewandowski J,Hupfer M. Effect of macrozoobenthos on two-dimensional small-scale heterogeneity of pore water phosphorus concentrations in lake sediments: A laboratory study. Limnol Oceanogr,2005,50: 1106-1118.
[11]  Wetzel RG. Detritus,macrophytes and nutrient cycling in lakes. Mem Ist Ital Idrobiol,1990,47: 237-249.
[12]  张路,范成新,王建军等. 太湖草藻型湖区间隙水理化特性比较. 中国环境科学,2004,24(5): 556-560.
[13]  Denis L,Grenz C,Alliot E et al. Temporal variability in dissolved inorganic nitrogen flux at the sediment-water interface and related annual budget on a continental shelf (NW Mediterranean). Oceanoogical Acta,2001,24: 85-97.
[14]  Boon AR,Duineveld A,Berghuis EM et al. Relationships between benthic activity and the annual phytopigment cycle in near-bottom water and sediment in the Southern North Sea. Estuarine Coastal and Shelf Science,1998,46: 1-3.
[15]  张西科,张福锁,毛达如. 水稻根麦铁氧化物胶膜对水稻吸收磷的影响. 植物营养与肥料学报,1997,3(4): 295-299.
[16]  更多...
[17]  刘文菊,朱永官. 湿地植物根表的铁锰氧化物膜. 生态学报,2005,25(2): 358-363.
[18]  Reddy KR,D\'Angelo EM. Biogeochemical indicators to evaluate pollutant removal efficiency in constructed Wetlands. Wat Sci Technol,1997,35(5): 1-10.
[19]  Qin BQ,Zhu GW. The nutrient forms,cycling and exchange flux in the sediment and overlying water system in lakes from the middle and lower reaches of Yangtze River. Science in China: Series D Earth Sciences,2006,49(Supp I): 1-13.
[20]  马凯,蔡庆华,谢志才等. 沉水植物分布格局对湖泊水环境N、P 的因子影响. 水生生物学报,2003,27(3): 231-237.
[21]  闫云君,李晓宇,梁彦龄. 草型湖泊和藻型湖泊中大型底栖动物群落结构的比较. 湖泊科学,2005,17 (2): 176-182.
[22]  袁信芳,赵新燕,施华宏等. 太湖水/沉积物界面固着藻类的时空分布特征. 农业环境科学学报,2007,26(6): 2287-2291.
[23]  Xie LQ,Xie P,Tang HJ. Enhancement of dissolved phosphorus release from sediment to lake water by Microcystis bloomsan enclosure experiment in a hyper-eutrophic,subtropical Chinese lake. Environ Pollut,2003,122: 391-399.
[24]  Grenz C,Cloem J,Hager SW et al. Dynamics of nutrient cycling and related benthic nutrient and oxygen flux during a spring phytoplankton bloom in South San Francisco Bay (USA). Marine Ecology Progress Series,2000,197: 67-80.
[25]  Koho KA,Langezaal AM,Van Lith YA et al. The influence of a simulated diatom bloom on deep-sea benthic foraminifera and the activity of bacteria: A mesocosm study. Deep-Sea ResearchⅠ,2008,55: 696-719.
[26]  吴振斌,邱东茹,贺锋等. 沉水植物重建对富营养水体氮磷营养水平的影响. 应用生态学报,2003,14(8):1351-1353.
[27]  马凯,蔡庆华,谢志才等. 沉水植物分别格局对湖泊水环境N、P 的因子影响. 水生生物学报,2003,27(3): 231-237.
[28]  包先明,陈开宁,范成新. 沉水植物生长对沉积物间隙水中的氮磷分布及界面释放的影响. 湖泊科学,2006,18 (5): 515-522.
[29]  Scheffer M. Ecology of shallow lakes. London: Chapman & Hall,1998: 1-357.
[30]  S?ndergaard M,Jensen JP,Jeppesen E. Internal phosphorus loading in shallow Danish lakes. Hydrobiologia,1999,408/409: 145-152.
[31]  谢平. 浅水湖泊内源磷负荷季节变化的生物驱动机制. 中国科学: D 辑: 地球科学,2005,35(S2): 11-23.
[32]  Xie LQ,Xie P. Long-term (1956-1999) changes of phosphorus in a shallow,subtropical Chinese lake with emphasis on the role of inner ecological process. Water Research,2002,36: 343-349.
[33]  王圣瑞,金相灿,赵海超等. 沉水植物黑藻对上覆水中各形态磷浓度的影响. 地球化学,2006,35(2): 179-186.
[34]  Trolle D,Zhu GW,Hamilton D et al. The influence of water quality and sediment geochemistry on the horizontal and vertical distribution of phosphorus and nitrogen in sediments of a large,shallow lake. Hydrobiologia,2009,627: 31-44.
[35]  Nowicki BL,Requintina E,Keuren DV et al. Nitrogen losses through sediment denitrification in Boston Harbor and Massachusetts Bay. Estuaries,1997,20: 626-639.
[36]  Desimone LA,Howes BL. Denitrification and nitrogen transport in a coastal aquifer receiving wastewater discharge. Environmental Science and Technology,1996,30: 1152-1162.
[37]  Herbert RA. Nitrogen cycling in coastal marine ecosystems. FEMS Microbiology Review,1999,23: 563-590.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133