全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
湖泊科学  2013 

人工载体理化性状对附着生物水质修复能力的影响

DOI: 10.18307/2013.0106

Keywords: 人工载体,理化性状,附着生物,初级生产力,叶绿素a,碱性磷酸酶活性

Full-Text   Cite this paper   Add to My Lib

Abstract:

附着生物初级生产力、叶绿素a含量和碱性磷酸酶活性能够指示其对水质的净化能力.本实验选择了5种具有不同表面结构和理化特性的人工载体(载玻片、PVC片、软性载体、组合载体和立体载体),野外原位测定了不同人工载体上附着生物的初级生产力、叶绿素a含量及碱性磷酸酶活性.结果表明:人工载体的理化性状是影响其上附着生物群落稳定、生产力、叶绿素a含量和碱性磷酸酶活性的重要因素.在野外原位条件下,附着生物通常在8~10d就可以达到最大附着量,此时,其初级生产力、叶绿素a含量和代谢活性等均处于最佳状态.在所选择的5种人工载体中,立体载体和软性载体上附着生物的初级生产力、叶绿素a含量及碱性磷酸酶活性均显著高于其他3种载体,其中立体载体上附着生物净初级生产力最高可达164.21mgO2/(g·h),且与软性载体相比,立体载体价格相对经济,因此立体载体是一种比较理想的用于水质修复的人工载体.

References

[1]  秦伯强. 附着生物在浅水富营养化湖泊藻-草型生态系统转化过程中的作用. 中国科学: C 辑,2006,36 (3): 283-288.
[2]  Irfanullah HM. Factors influencing the return of submerged plants to a clear-water,shallow temperate lake. Aquatic Botany, 2004,80(3): 177-191.
[3]  顾泳洁,王秀芝,廖祖荷. 利用着生生物群落动态变化监测水质的研究. 华东师范大学学报: 自然科学版,2 005,4: 87-94.
[4]  Adey W,Luekett C,Jensen K. Phosphorus removal from natural waters using controlled algal production. Restoration Ecology,1993,1: 29-39.
[5]  J?bgen A,Palm A,Melkonian M. Phosphorus removal from eutrophic lakes using periphyton on submerged artificial substrata. Hydrobiologia,2004,528(1): 123-142.
[6]  Burkholder JAM,Wetzel RG. Epiphytic alkaline phosphatase on natural and artificial plants in an oligotrophic lake: re-evaluation of the role of macrophytes as a phosphorus source for epiphytes. Limnology and Oceanography,1990,35(3): 736-747.
[7]  纪荣平,吕锡武,李先宁. 人工介质对富营养化水体中氮磷营养物质去除特性研究. 湖泊科学,2 007,1 9(1): 39-45.
[8]  Danilov RA,Ekelund N. Comparison of usefulness of three types of artificial substrata(glass,wood and plastic) when studying settlement patterns of periphyton in lakes of different trophic status. Journal of Microbiological Methods,2001,45 (3): 167-170.
[9]  刘景明,刘慧,乔淑媛等. 废水处理有机填料的合成材料现状和展望. 环境科学与技术, 2010, 33(6E): 321-326.
[10]  金相灿,屠清瑛. 湖泊富营养化调查规范: 第2 版. 北京: 中国环境科学出版社, 1990.
[11]  陈宇炜,高锡云. 浮游植物叶绿素a 含量测定方法的比较测定. 湖泊科学, 2000,1 2(2): 185-188.
[12]  Liboriussen L,Jeppesen E. Periphyton biomass,potential production and respiration in a shallow lake during winter and spring. Hydrobiologia,2009,632(1): 201-210.
[13]  陈重军,韩志英,朱荫湄等. 周丛藻类及其在水质净化中的应用. 应用生态学报,2 009,2 0(11): 2820-2826.
[14]  Adey W,Luckett C,Jensen K. Phosphorus removal from natural waters using controlled algal production. Restoration Ecology,1993,1(1): 29-39.
[15]  Dodds WK. The role of periphyton in phosphorus retention in shallow freshwater aquatic systems. Journal of Phycology, 2003,39(5): 840-849.
[16]  Wynne D,Kaplan B,Berman T. Phosphatase activities in lake Kinneret phytoplankton. In: Chróst RJ ed. Microbial enzymes in aquatic environments. New York: Springer-Verlag,1991: 220-226.
[17]  Berman T. Alkaline phosphatases and phosphorus availability in Lake Kinneret. Limnology and Oceanography,1970,15: 663-674.
[18]  Stewart AJ,Robert G,Wetzel WK. Influence of dissolved humic materials on carbon assimilation and alkaline phosphatase activity in natural algal-bacterial assemblages. Freshwater Biology,1982,12(4): 369-380.
[19]  Bae KS,Barton LL. Alkaline phosphatase and other hydrolyases produced by Cenococcum graniforme,an ectomycorrhizal fungus. Applied and Environmental Microbiology,1989,55(10): 2511-2516.
[20]  Wetzel RG. Opening remarks. In: Wetzel RG ed. Periphyton of freshwater ecosystems. The Hague: Dr W. Junk Publishers, 1983: 3-4.
[21]  宋玉芝. 附着生物对太湖沉水植物影响的初步研究. 应用生态学报,2 007,1 8(4): 928-932.
[22]  梁霞,李小平,史雅娟. 周丛藻类水质处理系统中氮、磷污染物去除效果研究. 环境科学学报,2008,2 (4): 695-704.
[23]  Bothwell ML. Phosphorus limitation of lotic periphyton growth rates: an intersite comparison using continuous-flow troughs (Thompson River system,British Columbia). Limnology and Oceanography,1985,30(3): 527-542.
[24]  Tuchman M,Blinn DW. Comparison of attached algal communities on natural and artificial substrata along a thermal gradient. British Phycological Journal,1979,14(3): 243-254.
[25]  Cattaneo A,Amireault MC. How artificial are artificial substrata for periphyton? Journal of North American Benthological Society,1992,11: 244-256.
[26]  Lamberti GA,Resh VH. Comparability of introduced tiles and natural substrates for sampling lotic bacteria,algae and macroinvertebrates. Freshwater Biology,1985,15: 21-30.
[27]  Kralj K,Plenkovi?-Moraj A,Gligora M et al. Structure of periphytic community on artificial substrata: influence of depth, slide orientation and colonization time in karstic Lake Visova?ko,Croatia. Hydrobiologia,2006,560(1): 249-258.
[28]  Winfield Fairchild G,Lowe RL. Artificial substrates which release nutrients: effects on periphyton and invertebrate succession. Hydrobiologia,1984,114(1): 29-37.
[29]  宋玉芝,秦伯强,高光. 附着生物对富营养化水体氮磷的去除效果. 长江流域资源与环境,2 009, 18(2): 180-185.
[30]  Liboriussen L,Jeppesen E. Structure,biomass,production and depth distribution of periphyton on artificial substratum in shallow lakes with contrasting nutrient concentrations. Freshwater Biology,2006,51(1): 95-109.
[31]  Shevchenko T. Distribution of periphyton algae of the dnieper reservoirs depending on the type of Substratum. Hydrobiological Journal,2011,47(3): 3-13.
[32]  Witt V,Wild C,Uthicke S. Effect of substrate type on bacterial community composition in biofilms from the Great Barrier Reef. FEMS Microbiology Letters,2011,323: 188-195.
[33]  更多...
[34]  Barbiero RP. A multi-lake comparison of epilithic diatom communities on natural and artificial substrates. Hydrobiologia, 2000,438(1): 157-170.
[35]  张运林,秦伯强,陈伟民等. 太湖水体中悬浮物研究. 长江流域资源与环境,2 004, 13(3): 266-271.
[36]  周易勇,李建秋. 东湖间隙水自由碱性磷酸酶活性的季节性与组成的非均一性. 水生生物学报,2003,27 (1): 100-102.
[37]  高光,秦伯强. 太湖梅梁湾中碱性磷酸酶的活性及其与藻类生长的关系. 湖泊科学, 2004, 16(3): 245-251.
[38]  Letelier M,Repetto Y,Aldunate Y et al. Acid and alkaline phosphatase activity in Trypanosoma cruzi epimastigotes. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry,1985,81(1): 47-51.
[39]  Tuchman ML,Stevenson RJ. Comparison of clay tile,sterilized rock,and natural substrate diatom communities in a small stream in southeastern Michigan,USA. Hydrobiologia,1980,75(1): 73-79.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133