全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
湖泊科学  2013 

改性粘土辅助沉水植物修复技术维持清水稳态的原位研究

DOI: 10.18307/2013.0103

Keywords: 富营养化水体,苦草,壳聚糖改性粘土,沉水植被修复,水质改善

Full-Text   Cite this paper   Add to My Lib

Abstract:

在富营养湖泊治理实践中,修复沉水植被被认为是改善水质的长效措施,而壳聚糖改性粘土是短期快速改善水质的有效手段.本研究利用改性粘土辅助沉水植被修复,旨在探索改善水质的长效方案.2011年5-11月在太湖梅梁湾开展了四组不同处理(对照、水草、水草+粘土、粘土)围隔实验,在水草(盖度13.0%)和水草+粘土(盖度52.3%)围隔中不同程度重建了苦草群落.实验期内每3d一次的水质监测表明,粘土处理可显著改善水质,水体总氮(TN)、总磷(TP)、正磷酸盐(PO43--P)和叶绿素a(Chl.a)含量分别比对照下降了20.7%、74.6%、31.0%和80.4%,透明度(SD)升高了90.4%;粘土辅助植被修复改善水质效果最长稳,水体TN、TP、PO43--P和Chl.a含量分别比对照下降了36.2%、64.0%、28.6%和71.1%,SD升高了76.4%;低盖度苦草群落单独处理对水质改善效果不显著.在三种处理中,粘土辅助植被修复改善底质效果最好,使间隙水的TN、TP、PO43--P、NH4+-N分别比实验前下降了15.6%、61.7%、55.8%和82.8%.本研究表明改性粘土辅助沉水植被修复可作为重富营养水体中水质改善的整合技术,但其长期生态效应仍需谨慎评估.

References

[1]  高咏卉,俞志明,宋秀贤等. 有机改性黏土对海水中营养盐及主要水质因子的影响. 海洋科学,2 007,3 1(8): 30-37.
[2]  Strand SP,Nordengen T,Hstgaard K. Efficiency of chitosans applied for flocculation of different bacteria. Water Research, 2002,36: 4745-4752.
[3]  更多...
[4]  蒋文华,韩世钧. 粘度法研究壳聚糖对外加盐的敏感性. 高分子学报,1 998,5: 567-572.
[5]  Shao JH,Wang ZJ,Liu Y et al. Physiological responses of Microcystis aeruginosa NIES-843(cyanobacterium) under the stress of chitosan modified kaolinite(CMK) loading. Ecotoxicology,2012,21(3): 698-704.
[6]  孙小静,秦伯强,朱广伟. 蓝藻死亡分解过程中胶体态磷、氮、有机碳的释放. 中国环境科学,2 007, 27(3): 341-345.
[7]  张木兰,潘纲,陈灏等. 改性沉积物除藻对水质改善的效果研究. 环境科学学报,2 007, 27(1): 13-17.
[8]  Carignan R,Kalff J. Phosphorus sources for aquatic weeds: water or sediments? Science,1980,207: 987-989.
[9]  Carr GM,Chambers PA. Macrophyte growth and sediment phosphorus and nitrogen in a Canadian prairie river. Freshwater Biolology,1998,39: 525-536.
[10]  谢平. 微囊藻毒素对人类健康影响相关研究的回顾. 湖泊科学,2 009, 21(5): 603-613.
[11]  Orth RJ,Moore KA. Chesapeake Bay: an unprecedented decline in submerged aquatic vegetation. Science,1983,222: 51-53.
[12]  Moss B. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia,1990,200/201(1): 367-377.
[13]  Scheffer M. Ecology of shallow lakes. New York: Chapman & Hall,1998: 20-234.
[14]  秦伯强,高光,胡维平等. 浅水湖泊生态系统恢复的理论与实践思考. 湖泊科学,2005,1 7(1): 9-16.
[15]  古滨河. 美国Apopka 湖的富营养化及其生态恢复. 湖泊科学, 2005,1 7(1): 1-8.
[16]  Qiu DG,Wu ZB,Liu BY et al. The restoration of aquatic macrophytes for improving water quality in a hypertrophic shallow lake in Hubei Province,China. Ecological Engineering,2001,18: 147-156.
[17]  Morris K,Harrison KA,Bailey PCE et al. Domain shifts in the aquatic vegetation of shallow urban lakes: The relative roles of low light and anoxia in the catastrophic loss of the submerged angiosperm Vallisneria americana. Marine & Freshwater Research,2004,55: 749-758.
[18]  Anderson DM. Turning back the harmful red tide. Nature,1997,388: 513-514.
[19]  邹华,潘纲,陈灏. 壳聚糖改性粘土对水华优势藻铜绿微囊藻的絮凝去除. 环境科学,2 004, 25(6): 40-43.
[20]  Pan G,Yang B,Wang D et al. In-lake algal bloom removal and submerged vegetation restoration using modified local soils. Ecological Engineering,2011,37: 302-308.
[21]  Zou H,Pan G,Chen H et al. Removal of cyanobacterial blooms in Lake Taihu using local soils. II. Effective removal of Microcystis aeruginosa using local soils and sediments modified by chitosan. Environmental Pollution,2006,141: 201-205.
[22]  Pan G,Zou H,Chen H et al. Removal of harmful cyanobacterial blooms in Taihu Lake using local soils. III. Factors affecting the removal efficiency and an in situ field experiment using chitosan-modified local soils. Environmental Pollution, 2006,141(2): 206-212.
[23]  胡志新,胡维平,张发兵等. 太湖梅梁湾生态系统健康状况周年变化的评价研究. 生态学杂志,2005,24 (7): 364-368.
[24]  Divakaran R,Pillai VNS. Flocculation of kaolinite suspensions in water by chitosan. Water Research,2001,35(16): 3904-3908.
[25]  黄祥飞. 湖泊生态调查观测与分析. 北京: 中国标准出版社,2 000.
[26]  国家环境保护总局. 水和废水监测分析方法: 第4 版. 北京: 中国环境科学出版社,2 002: 88-438.
[27]  Swartzen-Allen SL,Matijevic E. Surface and colloid chemistry of clays. Chemical Review,1974,74(3): 385-400.
[28]  Barko JW,James WF. Effects of submerged aquatic macrophytes on nutrient dynamics,sedimentation and resuspension. In: Jeppesen E,Sondergaard M,Christoffersen K eds. The structuring role of submerged macrophytes in lakes. New York: Springer-Verlag,1998: 197-214.
[29]  Short FT,Burdick DM,Kaldy JEK. Mesocosm experiments quantify the effects of eutrophication on eelgrass,Zostera marina. Limnol & Oceanogr,1995,40: 740-749.
[30]  Ni LY. Growth of potamogeton maackianus under low-light stress in eutrophic water. Freshw Ecol,2001,16: 249-256.
[31]  黎慧娟,倪乐意,曹特等. 弱光照和富营养对苦草生长的影响. 水生生物学报,2 008,3 2(2): 225-230.
[32]  Cao T,Xie P,Ni LY et al. The role of NH4 toxicity in the decline of the submersed macrophyte Vallisneria natans in lakes of the Yangtze River basin,China. Mar Freshwater Res,2007,58: 581-587.
[33]  Zhang M,Wang ZQ,Xu J et al. Ammonium,microcystins,and hypoxia of blooms in eutrophic water cause oxidative stress and C-N imbalance in submersed and floating-leaved aquatic plants in Lake Taihu,China. Chemosphere,2011,82: 329-339.
[34]  陈开宁,李文朝,吴庆龙等. 滇池蓝藻对沉水植物生长的影响. 湖泊科学, 2003,1 5(4): 364-368.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133