全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
湖泊科学  2013 

镍胁迫对菹草(PotamogetoncrispusL.)活性氧及脯氨酸代谢的影响

DOI: 10.18307/2013.0117

Keywords: 菹草,Ni2+胁迫,活性氧,脯氨酸代谢

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文以组织培养技术培养的菹草无菌苗为实验材料,研究了不同浓度(0、0.05、0.10、0.15、0.20mmol/L)Ni2+胁迫对菹草过氧化氢(H2O2)、超氧阴离子(O2.-)和丙二醛(MDA)的含量、抗氧化系统、脯氨酸代谢途径的影响.结果显示:(1)Ni2+胁迫影响了活性氧水平,主要表现为H2O2和O2.-的大量积累;MDA含量也随着Ni2+浓度的升高呈上升趋势;(2)随着Ni2+浓度的升高,超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性及还原型谷胱甘肽(GSH)、非蛋白巯基(NP-SH)含量均表现为先升后降趋势;抗坏血酸(AsA)含量变化不明显;植物络合素(PCs)则表现为上升趋势;(3)脯氨酸代谢关键酶在Ni2+胁迫下表现为:鸟氨酸转氨酶(OAT)活性在0~0.10mmol/LNi2+胁迫下高于对照组;吡咯啉-5-羧酸合成酶(P5CS)活性在Ni2+大于0.10mmol/L时,显著增加;脯氨酸脱氢酶(ProDH)活性无显著变化;脯氨酸(Pro)含量则均显著高于对照组.以上结果表明,Ni2+胁迫提高了活性氧的水平,加重了膜脂过氧化的程度,干扰了抗氧化系统的内在平衡;此外,低浓度Ni2+胁迫下菹草脯氨酸积量主要依赖于鸟氨酸途径,而高浓度下则主要依靠谷氨酸途径.

References

[1]  Gomes-Junior RA,Moldes CA,Delite FS et al. Nickel elicits a fast antioxidant response in Coffea arabica cells. Plant Physiology and Biochemistry,2006,44: 420-429.
[2]  马放,冯玉杰,任南琪. 环境生物技术. 北京: 化学工业出版社,2003: 124-126.
[3]  廖金凤. 电镀废水中铜锌铬镍对农业环境的影响. 农村生态环境,1 999, 15(4): 52-55.
[4]  李晓玲,张义贤. 氯化镍对绿豆和大麦核仁结构损伤的研究. 山西大学学报: 自然科学版, 2006, 29(3): 313-316.
[5]  郑爱珍. 镍对大豆、玉米生长早期膜脂过氧化的影响. 种子,2 007,2 6(7): 14-16.
[6]  刘鹏刚,张玉秀,张媛雅等. 垂序商陆对镍胁迫的抗氧化影响研究. 西北林学院学报,2 006, 26(3): 45-49.
[7]  Zhao J,Shi GX,Yuan QH. Polyamines content and physiological and biochemical responses to ladder concentration of nickel stress in Hydrocharis dubia (Bl.) Backer leaves. Biometals,2008,21: 665-674.
[8]  Zhang LP,Mehta SK,Liu ZP et al. Copper-induced proline synthesis is associated with nitric oxide generation in Chlamydomonus reinhardtii. Plant and Cell Physiology,2008,49: 411-419.
[9]  Dinakar N,Nagajyothi PC,Suresh S et al. Cadmium induced changes on proline,antioxidant enzymes,nitrate and nitrite reductases in Arachis hypogaea L. Journal of Environmental Biology,2009,30(2): 289-294.
[10]  Kishor PBK,Sangam S,Amrutha RN et al. Regulation of proline biosynthesis,degradation,uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Current Science,2005,88(3): 424-438.
[11]  Ashraf M,Foolad MR. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany,2007,59: 206-216.
[12]  董秋丽,夏方山,董宽虎. NaCl 胁迫对芨芨草苗期脯氨酸代谢的影响. 草业学报,2 010, 19: 71-76.
[13]  夏方山,董秋丽,董宽虎. 盐胁迫对碱地凤毛菊苗期脯氨酸代谢的影响. 草地学报, 2010, 18(5): 689-693.
[14]  赵福庚,刘友良,张文华. 大麦幼苗叶片脯氨酸代谢及其与耐盐性的关系. 南京农业大学学报,2 002,2 5(2): 7-10.
[15]  赵福庚,刘友良. 大麦幼苗多胺合成比脯氨酸合成对盐胁迫更敏感. 植物生理学报,2 000,2 6(4): 343-349.
[16]  王爱国,罗广华. 植物的超氧物自由基与羟胺反应的定量关系. 植物生理学通讯,1 990,(6): 55-57.
[17]  李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社,2000: 164-165.
[18]  Beyer WF,Fridovich I. Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Analytical Biochemistry,1987,161(2): 559-566.
[19]  Cobbett C,Goldsbrough P. Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annual Review of Plant Biology,2002,53(4): 159-182.
[20]  Sun SQ,He M,Cao T et al. Antioxidative responses related to H2 O2 depletion in Hypnum plumaeforme under the combined stress induced by Pb and Ni. Environmental Monitoring and Assessment,2010,163: 303-312.
[21]  Bartoli CG,Simontacchi M,Tambussi E et al. Drought and watering-dependent oxidative stress: Effect on antioxidant content in Triticum aestivum leaves. Journal of Experimental Botany,1999,50: 375-383.
[22]  Ashraf M,Foolad MR. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany,2007,59: 206-216.
[23]  文锦芬,杨双龙,龚明. Cd2+胁迫诱导烟草悬浮细胞脯氨酸积累的生化途径及外源脯氨酸对Cd2+胁迫下H2 O2 产生的抑制作用. 植物生理学报,2 011, 47(4): 392-398.
[24]  Ozden M,Demirel U,Kahraman A. Effects of proline on antioxidant system i????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
[25]  张志良,瞿伟菁. 植物生理学实验指导: 第3 版. 北京: 高等教育出版社, 2003: 67-69, 268-269.
[26]  Góth L. A simple method for determination of serum catalase activity and revision of reference range. Clinica Chimica Acta, 1991,196: 143-151.
[27]  更多...
[28]  陈建勋,王晓峰. 植物生理学实验指导. 广州: 华南理工大学出版社,2002: 125-127.
[29]  Nouairi I,Ben Ammar W,Ben Youssef N et al. Antioxidant defense system in leaves of Indian mustard (Brassica juncea) and rape (Brassica napus) under cadmium stress. Acta Physiological Plantarum,2009,31(2): 237-247.
[30]  Wang X,Shi GX,Xu QS et al. Exogenous polyamines enhance copper tolerance of Nymphoides peltatum. Journal of Plant Physiology,2007,164(8): 1062-1070.
[31]  赵贵林,陈强,胡国霞等. 水稻脯氨酸代谢关键酶对水分胁迫的响应. 干旱地区农业研究,2 011, 29(3): 80-83.
[32]  Yang YL,Zhang YY,Wei XL et al. Comparative antioxidative responses and proline metabolism in two wheat cultivars under short term lead stress. Ecotoxicology and Environmental Safety,2011,7 4: 733-740.
[33]  徐卫红,王宏信,刘怀等. Zn、Cd 单一及复合污染对黑麦草根分泌物及根际Zn、Cd 形态的影响. 环境科学,2007, 28(9): 2089-2095.
[34]  杜琳,张荃. 植物谷胱甘肽与抗氧化胁迫. 山东科学,2 008,2 1(2): 28-32.
[35]  Fecht-Christoffers MM,Horst WJ. Does apoplastic ascorbic acid enhance manganese tolerance of Vigna unguiculata and Phaseolus vulgaris. Plant Nutrition and Fertilizer Science,2005,168: 590-599.
[36]  Fang YZ,Zheng RL. Theory and application of free radical biology. Beijing: Science Press,2002: 340-342.
[37]  Aravind P,Prasad MNV. Zinc alleviates cadmium i湮?汵散慥癤攠獯?潩晤?杴物慶灥攠癳楴湲敥??嘠楩瑮椠獃?癲楡湴楯晰敨特慬????敤硥灭潥獲敳摵?琠潌?漺砠楡搠慦瑲楥癥攠?獬瑯牡整獩獮?戠祦???獨畷扡????獭畡扣?佯?獨畹扴?金??獬畡扮???卨捹楳敩湯瑬楯慧??潡牮瑤椠捂畩汯瑣畨牥慭敩??ひべ????????????????户爮?孢??嵛″失慝渠李?卵???慩渠?匬卂??漠湁杭?????礬摂牥潮朠教湯?灳敳牥潦砠楎搠敥?椠湡摬甮挠敁摮?灩牯潸汩楤湡敮?愠湤摥?浥敮瑳慥戠潳汹楳捴?灭愠瑩桮眠慬祥?潶晥?椠瑯獦?慉据捤畩浡畮氠慭瑵楳潴湡?楤渠?浂慲楡穳敳?獣敡攠摪汵楮湣来獡???潮畤爠湲慡汰?漠昨?偲污慳湳瑩?灡栠祮獡楰潵汳漩朠祵??づひ??????????????????扣牴?嬠??嵹?婩桯敬湯?坩???愠?公???偡牲潵汭椬渲攰‰洹攬琳愱戨漲氩椺猠洲″椷渭′爴攷献瀼潢湲猾敛″琲潝?獍慩汳瑨?獡琠牓攬獓獲?楶湡?捴潡浶浡漠湓?牔敲敩摰?孴偨桩爠慒杄洠楥瑴攠獡?愮甠獐瑨特慴汯楣獨???慴癩???呹牮楴湨??敩硳?卡瑮敤甠摲嵥???潮瑳慥渠楯捦愠??慴物楯湸慩??のぴ??????????ち???????扴牲?孳??嵩??桂敡湣??呡??桯敮湮?????楌渮????敮瑴?慐汨??剩敯杬畯汧慹琠楡潮湤?潂晩?灣牨潥汭楩湳整?慹挬挲田洰甶氬愴琠椴漺渠′椵渭″搷攮琼慢捲栾敛搳″牝椠捜旀?氬斷憇皇攬獵?旮硉瀮漠猍敩搭※琧漧?斧砟揊攅獤猺?挮漠瀟灩日爋??倬氲愠渰琰?匬挱椠攷渨挲攩?㈠?????????????社?そ?朱为民,丁海东,齐乃敏等. Cd2+胁迫对番茄幼苗抗坏血酸-谷胱甘肽循环代谢的影响. 华北农学报,2005, 20(3): 50-53.
[38]  Noctor G,Gomez L,Vanacker H et al. Interactions between biosynthesis compartmentation and transport in the control of glutathione homeostasis and signaling. Journal of Experimental Botany,2002,53(372): 1283-1304.
[39]  Xiang C,Oliver DJ. Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell,1998,10: 1539-1550.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133