全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
湖泊科学  2013 

基于水声学方法的太湖鱼类空间分布和资源量评估

DOI: 10.18307/2013.0113

Keywords: 水声学,太湖,鱼类,大小组成,空间分布,资源量

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用BioSonicsDT-X科学回声探测仪(208kHz)在太湖2011年开捕前的8月对东部和北部湖区的鱼类进行了走航式水声学调查,并结合地理信息系统(GIS)模型对调查湖区的鱼类大小组成、空间分布和资源量进行了评估.结果表明,调查湖区的鱼类平均目标强度(目标鱼类对声波的反射能力)为-51.85±0.02dB,平均体长在6cm左右,体长范围为2.35~89.33cm,不同区域间的鱼类目标强度差异性显著,表明不同区域间鱼类大小存在差异,其中鱼类的最小平均目标强度(-53.94±0.10dB)出现在洞庭东西山之间,最大平均目标强度(-50.27±0.14dB)出现在光福湾.调查湖区的鱼类密度在0.43~3.90ind./m3之间,采用地理信息系统(GIS)对调查湖区进行建模得到鱼类密度均值为2.27±0.57ind./m3,不同区域间鱼类密度差异性显著,鱼类密度在敞水区较高.基于建模的栅格化数据评估调查湖区鱼类资源量约为5.3×109ind.,其中目标强度在-45dB(体长约13cm)以下的鱼类占98.49%.本文对水声学方法在大型浅水湖泊中的应用进行了初步探索,水声学方法可在一定程度上突破传统鱼类资源调查方法在较大空间尺度上的局限性,但在调查时易受风浪、水生植物、船速的影响.

References

[1]  Jurvelius J,Leinikki J,Mamylov V et al. Stock assessment of pelagic three-spined stickleback (Gasterosteus aculeatus): A simultaneous up-looking and down-looking echo-sounder study. Fisheries Research,1996,27(4): 227-241.
[2]  Stockwell JD,Yule DL,Hrabik TR et al. Vertical distribution of fish biomass in lake superior: Implications for day bottom trawl surveys. North American Journal of Fisheries Management,2007,27(3): 735-749.
[3]  Ohshimo S,Mitani T,Honda S. Acoustic surveys of spawning Japanese sardine,Sardinops melanostictus,in the waters off western and southern Kyushu,Japan. Fisheries Science,1998,64(5): 665-672.
[4]  Drastik V,Kubecka J,Cech M et al. Hydroacoustic estimates of fish stocks in temperate reservoirs: day or night surveys? Aquatic Living Resources,2009,22(1): 69-77.
[5]  谭细畅,史建全,张宏等. EY60 回声探测仪在青海湖鱼类资源量评估中的应用. 湖泊科学,2009,21 (6): 865-872.
[6]  立川贤一,朱志荣,三浦泰藏. 用浅水湖泊型鱼探仪估算东湖鱼群数量. 水生生物学报,1 986,1 0(4): 311-326.
[7]  谭细畅,立川贤一. 东湖放养鱼类时空分布的水声学研究. 水生生物学报,2 002,2 6(6): 585-590.
[8]  谷孝鸿,朱松泉,吴林坤等. 太湖自然渔业及其发展策略. 湖泊科学,2 009,2 1(1): 94-100.
[9]  倪勇,朱成德. 太湖鱼类志. 上海: 上海科学技术出版社, 2005: 78-81.
[10]  何俊,谷孝鸿,白秀玲. 太湖渔业产量和结构变化及其对水环境的影响. 海洋湖沼通报, 2009,(2): 143-150.
[11]  朱广伟. 太湖富营养化现状及原因分析. 湖泊科学,2 008, 20(1): 21-26.
[12]  谷孝鸿,白秀玲,江南等. 太湖渔业发展及区域设置与功能定位. 生态学报,2 006,2 6(7): 2247-2254.
[13]  更多...
[14]  毛志刚,谷孝鸿,曾庆飞等. 太湖渔业资源现状(2009-2010) 及与水体富营养化关系浅析. 湖泊科学,2 011, 23(6): 967-973.
[15]  王苏民,窦鸿身. 中国湖泊志. 北京: 科学出版社, 1998: 261-268.
[16]  Misund OA. Underwater acoustics in marine fisheries and fisheries research. Reviews in Fish Biology and Fisheries,1997, 7(1): 1-34.
[17]  Foote KG. Fish target strengths for use in echo integrator surveys. Journal of the Acoustical Society of America,1987,823): 981-987.
[18]  Petitgas P. Geostatistics for fish stock assessments: a review and an acoustic application. ICES Journal of Marine Science, 1993,50(3): 285-298.
[19]  Li X,Cheng GD,Lu L. Comparison of spatial interpolation methods. Advance in Earth Sciences,2000,15(3): 260-265.
[20]  孙儒泳. 动物生态学原理. 北京: 北京师范大学出版社, 1987: 283-295.
[21]  Knudsen FR,Saegrov H. Benefits from horizontal beaming during acoustic survey: application to three Norwegian lakes. Fisheries Research,2002,56(2): 205-211.
[22]  Kubecka J,Duncan A. Acoustic size vs. real size relationships for common species of riverine fish. Fisheries Research, 1998,35(1/2): 115-125.
[23]  Dahl PH,Mathisen OA. Measurement of fish target strength and associated directivity at high frequencies. Journal of the Acoustical Society of America,1983,73(4): 1205-1211.
[24]  Ona E. Physiological factors causing natural variations in acoustic target strength of fish. Journal of the Marine Biological Association of the United Kingdom,1990,70(1): 107-127.
[25]  Gerlotto F,Georgakarakos S,Eriksen PK. The application of multibeam sonar technology for quantitative estimates of fish density in shallow water acoustic surveys. Aquatic Living Resources,2000,13(5): 385-393.
[26]  唐启升,王为祥,陈毓桢等. 北太平洋狭鳕资源声学评估调查研究. 水产学报,1 995,1 9(1): 8-20.
[27]  陈国宝,李永振,赵宪勇等. 南海北部海域重要经济鱼类资源声学评估. 中国水产科学,2 005,12(4): 445-451.
[28]  李永振,陈国宝,赵宪勇等. 南海北部海域小型非经济鱼类资源声学评估. 中国海洋大学学报,2005,35 (2): 206-212.
[29]  Hughes S. A mobile horizontal hydroacoustic fisheries survey of the River Thames,United Kingdom. Fisheries Research, 1998,35(1/2): 91-97.
[30]  Knudsen FR,Saegrov H. Benefits from horizontal beaming during acoustic survey: application to three Norwegian lakes. Fisheries Research,2002,56(2): 205-211.
[31]  陶江平,艾为明,龚昱田等. 采用渔业声学方法和GIS 模型对楠溪江鱼类资源量及空间分布的评估. 生态学报, 2010, 30(11): 2992-3000.
[32]  张慧杰,杨德国,危起伟等. 葛洲坝至古老背江段鱼类的水声学调查. 长江流域资源与环境,2 007, 16(1): 86-91.
[33]  陶江平,陈永柏,乔晔等. 三峡水库成库期间鱼类空间分布的水声学研究. 水生态学杂志,2 008, 28(5): 25-33.
[34]  詹秉义. 渔业资源评估. 北京: 中国农业出版社,1 995: 236-253.
[35]  王珂,段辛斌,刘绍平等. 三峡库区大宁河鱼类的时空分布特征. 水生生物学报, 2009, 33(3): 516-521.
[36]  朱松泉,刘正文,谷孝鸿. 太湖鱼类区系变化和渔获物分析. 湖泊科学,2 007,1 9(6): 664-669.
[37]  邓思明,藏增嘉. 太湖敞水区鱼类群里结构特征和分析. 水产学报,1 997,2 1(2): 34-42.
[38]  李圣法,藏增嘉. 太湖敞水区鱼类种间关系现状. 水产学报,1 998,2 2(1): 44-48.
[39]  Vogler R,Milessi AC,Quinones RA. Influence of environmental variables on the distribution of Squatina guggenheim (Chondrichthyes,Squatinidae) in the Argentine-Uruguayan Common Fishing Zone. Fisheries Research,2008,91(2/3): 212-221.
[40]  Tameishi H,Shinomiya H,Aoki I et al. Understanding Japanese sardine migrations using acoustic and other aids. ICES Journal of Marine Science,1996,53(2): 167-171.
[41]  Godlewska M,Swierzowski A. Hydroacoustical parameters of fish in reservoirs with contrasting levels of eutrophication. Aquatic Living Resources,2003,16(3): 167-173.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133