全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
湖泊科学  2014 

水位变化对河流、湖泊湿地植被的影响

DOI: 10.18307/2014.0601

Keywords: 水位,湿地植被,物种多样性,人工控湖、控河,水位调控

Full-Text   Cite this paper   Add to My Lib

Abstract:

水位是湿地生态水文过程的关键因素之一,其改变将影响湿地植被覆盖度和物种组成,最终产生群落演替.从水位梯度,水位波动和人工控湖、控河工程3方面论述水位变化对湿地植被的影响:由于对水位选择的不同及彼此竞争力的差异,湿地植物种沿水位具有梯度分布现象,同时形态可塑性能对其分布范围产生一定影响;水位波动的频率和淹没持续时间对于植被演替具有基础性的作用,水位波动幅度的影响则相对较小,周期性波动能维持以草本植物为主的湿地植被的物种多样性和稳定性,非周期性波动以洪水、干旱为主,易促进湿地植被向固定的水生或陆生方向演替;人工控湖、控河的影响在机理上并无特殊之处,但保证物种多样性和生态系统稳定性的各种缓解措施具有较高的参考价值.基于机理的量化模型,自然、人为因素驱动下水位变化对湿地植被影响的差别研究,模拟水位波动实验以及人工控湖、控河工程的跟踪观测将是今后该领域研究的热点.

References

[1]  Hill MN, Keddy PA, Wisheu IC. A hydrologicalmodel for predicting the effects of dams on the shoreline vegetation of lakes and reservoirs. Environmental Management, 1998, 22(5): 723-736.
[2]  Keddy PA, Fraser LH. Four general principles for the management and conservation of wetlands in large lakes: the role of water levels, nutrients, competitive hierarchies and centrifugal organization. Lakes and Reservoirs: Research and Management, 2000, 5: 177-185.
[3]  徐洋,刘文治,刘贵华.生态位限制和物种库限制对湖滨湿地植物群落分布格局的影响.植物生态学报,2009,33(3):546-554.
[4]  Vretare V, Weisner SEB, Strand JA et al. Phenotypic plasticity in Phragmites australis as a functional response to water depth. Aquatic Botany, 2001, 69: 127-145.
[5]  Blanch SJ, Ganf GG, Walker KF. Growth and resource allocation in response to flooding in the emergent sedge Bolboschoenus medianus. Aquatic Botany, 1999, 63(2): 145-160.
[6]  Lentz KA, Dunson WA. Water level affects growth of endangered northeastern bulrush, Scirpus ancistrochaetus Schuyler. Aquatic Botany, 1998, 60(3): 213-219.
[7]  Rea N, Ganf GG. Water depth changes and biomass allocation in two contrasting macrophytes. Australian Journal of Marine and Freshwater Research, 1994, 45(8): 1459-1468.
[8]  Weiher E, Keddy PA. The assembly of experimental wetland plant-communities. Oikos, 1995, 73(3): 323-335.
[9]  Wu Y, Sklar FH, Ruchey K. Analysis and simulations of fragmentation patterns in the everglades. Ecological Applications, 1997, 7(1): 268-276.
[10]  Cui B, He Q, Zhao X. Ecological thresholds of Suaeda salsa to the environmental gradients of water table depth and soil salinity. Acta Ecologica Sinica, 2008, 28(4): 1408-1418.
[11]  张金屯.数量生态学.北京:科学出版社, 2004.
[12]  Wilcox DA, Xie Y. Predicting wetland plant community responses to proposed water-level-regulation plans for Lake Ontario: GIS-basedmodeling. Journal of Great Lakes Research, 2007, 33(4): 751-773.
[13]  Hebb AJ, Mortsch LD, Deadman PJ et al. Modeling wetland vegetation community response to water-level change at Long Point, Ontario. Journal of Great Lakes Research,2013, 39(2): 191-200.
[14]  Casanova MT, Brock MA. How do depth, duration and frequency of flooding influence the establishment of wetland plant communities? Plant Ecology, 2000, 147(2): 237-250.
[15]  Manel L, Macro C. Effects of water level fluctuations on lakes: an annotated bibliography. Hydrobiologia,2008, 613(1): 171-184.
[16]  Vangeest GJ, Roozen F, Coops H et al. Vegetation abundance in lowland flood plan lakes determined by surface area, age and connectivity. Freshwater Biology, 2003, 48(4): 758-758.
[17]  Riis T, Hawes I. Relationships between water level fluctuations and vegetation diversity in shallow water of New Zealand lakes. Aquatic Botany, 2002, 74(2): 133-148.
[18]  Blanch SJ, Ganf GG, Walker KF. Tolerance of riverine plants to flooding and exposure indicated by water regime. Regulated Rivers: Research and Management, 1999, 15(1): 43-62.
[19]  Van OM, Van GN, Maltby E et al. Experimental manipulation of water levels in two French riverine grassland soils. Acta Oecologica-International Journal of Ecology, 2000, 21(1): 49-62.
[20]  Steinman AD, Ogdahl ME, Weinert M et al. Water level fluctuation and sediment-water nutrient exchange in Great Lakes coastal wetlands. Journal of Great Lakes Research, 2012, 36(4): 766-775.
[21]  Keeland BD, Sharitz RR. The effects of water-level fluctuations on weekly tree growth in a southeastern USA swamp. American Journal of Botany, 1997, 84(1): 131-139.
[22]  胡细英,熊小英.鄱阳湖水位特征与湿地生态保护.江西林业科技,2002,(5):1-4.
[23]  Cooke GD, Welch EB, Peterson S. Restoration and management of lakes and reservoirs: 3rd. Boca Raton: CRC Press, 2005: 591.
[24]  Jansson R, Nilsson C, Dynesius M et al. Effects of river regulation on river-margin vegetation: a comparison of eight boreal rivers. Ecological Applications, 2000, 10(1): 203-224.
[25]  Coops H, Vulink JT, Vannes EH. Managed water levels and the expansion of emergent vegetation along a lakeshore. Konstanz: Lake Shores 2003 International Conference, 2003,10(1): 203-224.
[26]  Nilsson C, Svedmark M. Basic principles and ecological consequences of changing water regimes: Riparian plant communities. Environmental Management, 2002, 30(4): 468-480.
[27]  Vangeest GJ, Coops H, Roijackers RMM. Succession of aquatic vegetation driven by reduced water-level fluctuations in floodplain lakes. Journal of Applied Ecology, 2005, 42(2):251-260.
[28]  孙荣,袁兴中,丁佳佳.三峡水库蓄水至156m水位后白夹溪消落带植物群落生态学研究.湿地科学,2010,8(1):1-7.
[29]  吕宪国.我国湿地研究进展.地理科学,1998,18(4):296-298.
[30]  刘永,郭怀诚,周丰等.湖泊水位变动对水生植被的影响机理及其调控方法.生态学报,2006,26(9):3117-3126.
[31]  徐治国,何岩,闫百兴等.营养物及水位变化对湿地植物的影响.生态学杂志,2006,25(1):87-92.
[32]  严登华,何岩,邓伟等.生态水文学研究进展.地理科学,2001,21(5):467-473.
[33]  Nǒges T, Nǒges P, Laugaste R. Water level as the mediator between climate change and phytoplankton composition in a large shallow temperate lake. International Conference on Limnology of Shallow Lakes, Balatonfured, 2002: 257-263.
[34]  Armstrong W. Aeration in higher plants. Advances in Botanical Research, 1980, 7: 225-232.
[35]  Keddy PA, Reznicek AA. Great lakes vegetation dynamics: The role of fluctuating water levels and buried seeds. Journal of Great Lakes Research, 1986, 12(1):25-36.
[36]  Wilson SD, Keddy PA. Plant zonation on a shoreline gradient: physiological response curves of component species. Journal of Ecology, 1985, 73: 851-860.
[37]  Nilsson C, Jansson R. Floristic differences between riparian corridors of regulated and free-flowing boreal rivers. Regulated Rivers: Research and Management, 1995, 11(1): 55-66.
[38]  Wassen MJ, Joost JHJ. In search of a hydrological explanation for vegetation changes along a fen gradient in the Biebrza Upper Basin(Poland). Vegetatio, 1996, 124(2): 191-209.
[39]  田迅,卜兆军,杨允菲等.松嫩平原湿地植被对生境干湿交替的响应.湿地科学,2004,2(2):122-127.
[40]  Rorslett B. An integrated approach to hydropower impact assessment. Hydrobiologia, 1989, 175(1): 65-82.
[41]  Keddy PA, Ellis TH. Seedling recruitment of 11 wetland plant-species along a water level gradient-shared or distinct responses. Canadian Journal of Botany, 1985, 63(10): 1876-1879.
[42]  张萌,倪乐意,徐军等.鄱阳湖草滩湿地植物群落响应水位变化的周年动态特征分析.环境科学研究,2013,26(10):1057-1063.
[43]  Crawford RMM. Oxygen availability as an ecological limit to plant distribution. Advances in Ecological Research, 1992, 23: 93-185.
[44]  Havens KE. Submerged aquatic vegetation correlations with depth and light attenuating materials in a shallow subtropical lake. Hydrobiologia, 2003, 493(1): 173-186.
[45]  任南,严国安.环境因子对东湖几种沉水植物生理的影响研究.武汉大学学报:自然科学版,1996,42(2):213-218.
[46]  White SD, Ganf GG. The influence of convective flow on rhizome length in Typha domingensis over a water depth gradient. Aquatic Botany, 1998, 62(1): 57-70.
[47]  Sorrell BK, Mendelssohn IA, McKee KL et al. Ecophysiology of wetland plant roots: Amodelling comparison of aeration in relation to species distribution. Annals of Botany, 2000, 86(3): 675-685.
[48]  更多...
[49]  Nielsen SL. A comparison of aerial and submerged photosynthesis in some Danish amphibious plants. Aquatic Botany, 1993, 45(1): 27-40.
[50]  谭学界,赵欣胜.水深梯度下湿地植被空间分布与生态适应.生态学杂志,2006,25(12):1460-1464.
[51]  Middelboe AL, Markager S. Depth limits andminimum light requirements of freshwater macrophytes. Freshwater Biology, 1997, 37(3): 553-568.
[52]  Grace JB. Effects of water depth on Typha latifolia and Typha domingensis. American Journal of Botany, 1989, 76(5): 762-768.
[53]  Coops H, Vandenbrink FW, Vandenvelde G. Growth andmorphological responses of four helophyte species in an experimental water-depth gradient. Aquatic Botany, 1996, 54(1): 11-24.
[54]  Wang F, Liang RJ, Yang XL et al. A study of ecological water requirements in Northwest China I: Theoretical analysis. Journal of Natural Resources, 2002, 16(1): 1-8.
[55]  Howard RJ, Rafferty PS. Clonal variation in response to salinity and flooding stress in four marsh macrophytes of the northern gulf of Mexico, USA. Environmental and Experimental Botany, 2006, 56(3): 301-313.
[56]  Kim JW, Lu Z, Lee H et al. Integrated analysis of PALSAR/Radarsat-1 In SAR and ENVISAT altimeter data for mapping of absolute water level changes in Louisiana wetlands. Remote Sensing of Environment, 2009, 113(11): 2356-2365.
[57]  Nicol JM, Ganf GG, Pelton GA. Seed banks of a southern Australian wetland: the influence of water regime on the final floristic composition. Plant Ecology, 2003, 168(2): 191-205.
[58]  Gacia E, Ballesteros E. The effect of increased water level on Isoetes lacustris L. in Lake Baciver, Spain. Journal of Aquatic Plant Management, 1996, 34: 57-59.
[59]  Vandervalk AG, Squires L, Welling CH. Assessing the impacts of an increase in water-level on wetland vegetation. Ecological Applications, 1994, 4(3): 525-534.
[60]  于丹.水生植物群落动态与演替的研究.植物生态学报,1994,18(4): 372-378.
[61]  Laine J, Vasander H, Laiho R. Long-term effects of water level drawdown on the vegetation of drained pine mires in southern Finland. Journal of Applied Ecology, 1995, 33(1): 785-790.
[62]  Coops H, Beklioglu M, Crisman TL. The role of water-level fluctuations in shallow lake ecosystems-workshop conclusions. Hydrobiologia, 2003, 506(1):23-27.
[63]  Nǒges P, Tuvikene L, Nǒges T et al. Primary production, sedimentation and resuspension in large shallow Lake Vortsjarv. Aquatic Sciences, 1999, 61(2): 168-182.
[64]  周万平,郭晓鸣,陈伟民等.南水北调东线一期工程对洪泽湖水生生物及生态环境影响的预测.湖泊科学,1994,6(2):131-135.
[65]  Pezeshki SR. Wetland plant responses to soil flooding. Quebec City:Symposium on Plant and Organisms in Stressed Wetland Environments, 2000: 299-312.
[66]  Lenssen JPM, Menting FBJ, Putten WH et al. Effects of sediment type and water level on biomass production of wetland plant species. Aquatic Botany,1999, 64(2): 151-165.
[67]  Wantzen KM, Rothhaupt KO, M?rtl M et al. Ecological effects of water-level fluctuations in lakes: an urgent issue. Hydrobiologia, 2008, 613(1): 1-4.
[68]  Nilsson C, Jansson R, Zinko U. Long-term responses of river-margin vegetation to water-level regulation. Science, 1997, 276(5313): 798-800.
[69]  Flynn KM, Mendelssohn IA, Wilsey BJ. The effect of water level management on the soils and vegetation of two coastal Louisiana marshes. Wetlands Ecology and Management, 1999, 7(4): 193-218.
[70]  Coops H, Hosper SH. Water-level management as a tool for the restoration of shallow lakes in the Netherlands. Victoria: Conference of the American Society of Limnology and Oceanography(ASLO), 2002: 193-218.
[71]  Toner M, Keddy PA. River hydrology and riparian wetlands: A predictivemodel for ecological assembly. Ecological Applications,1997, 7(1):236-246.
[72]  Wilcox DA, Meeker JE. Disturbance effects on aquatic vegetation in regulated and unregulated lakes in northernminnesota. Canadian Journal of Botany, 1991, 69(7): 1542-1551.
[73]  Hellsten S, Riihimaki J. Effects of lake water level regulation on the dynamics of littoral vegetation in northern Finland. Dublin: 9th International Symposium on Aquatic Weeds, 1996: 85-92.
[74]  Litvinov AS, Roshchupko VF. Long-term and seasonal water level fluctuations of the Rybinsk Reservoir and their role in the functioning of its ecosystem. Water Resources, 2007, 34(1): 27-34.
[75]  Wilcox DA. Response of wetland vegetation to the post-1986 decrease in Lake St. Clair water levels: Seed-bank emergence and beginnings of the Phragmites australis invasion. Journal of Great Lakes Research, 2012, 38(2): 270-277.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133