全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
湖泊科学  2014 

不同pH处理对菹草(PotamogetoncrispusL.)Cr6+毒害效应的影响

DOI: 10.18307/2014.0416

Keywords: 菹草,Cr6+胁迫,pH,元素含量,脯氨酸,多胺

Full-Text   Cite this paper   Add to My Lib

Abstract:

对Cr6+胁迫条件下不同pH处理对菹草无菌苗元素、光合色素、活性氧、丙二醛、抗氧化酶、脯氨酸(Pro)及多胺(PAs)含量的影响进行研究,以探讨不同pH处理影响水生植物Cr6+毒害效应的机制.结果表明:(1)偏酸性pH处理加剧菹草对铬的蓄积,而pH为7.0时Cr6+胁迫所造成的矿质元素失衡有所减弱;(2)Cr6+胁迫下pH为6.0~8.0的处理延缓了菹草的失绿症状,促进了光合色素的合成;(3)Cr6+胁迫下菹草超氧化物歧化酶、过氧化氢酶的活性在pH为6.0和7.0的处理组诱导程度最小;(4)Cr6+胁迫下pH为6.0和7.0处理的菹草Pro含量显著提高;(5)pH为4.0和5.0的处理使腐胺(Put)含量显著提高,而pH为6.0和7.0的处理则促进亚精胺(Spd)含量及游离态(Spd+Spm)/Put比值上升,精胺(Spm)含量总体趋势为随pH值升高而逐步上升,仅在pH为4.0和5.0的处理组中低于Cr6+胁迫对照组.因此,pH条件可影响菹草对铬及营养元素的积累,抗氧化酶、Pro、PAs代谢等生理生化过程,导致铬毒性效应差异.在pH为6.0~7.0的范围内,菹草能调节抗氧化酶系统,较有效地清除体内活性氧,提高机体中Pro、PAs含量及游离态(Spd+Spm)/Put比值,减轻膜系统脂质过氧化,维持机体内矿质元素平衡,致使毒性效应达到最小程度.

References

[1]  刘婉,李泽琴.水中铬污染治理的研究进展.广东微量元素科学,2007,14(9):5-9.
[2]  Panda SK, Chaodhury I, Khan MH. Heavy metals induce lipid peroxidation and affect antioxidants in wheat leaves. Biologia Plantarum, 2003,46(2):289-294.
[3]  Yu XZ, Gu JD, Huang SZ. Hexavalent chromium induced stress and metabolic responses in hybrid willows. Ecotoxicology, 2007,16(3):299-309.
[4]  Costa M, Klein CB. Toxicity and carcinogenicity of chromium compounds in humans. Critical Reviews in Toxicology, 2006,36(2):155-163.
[5]  袁祖丽,孙晓楠,刘秀敏.植物耐受和解除重金属毒性研究进展.生态环境,2008,17(6):2494-2502.
[6]  孙菲菲,赵彦坤,张文胜等.高pH对拟南芥萌发和主根伸长的影响.中国农学通报,2007,23(7):285-289.
[7]  Rayle DL, Cleland RE. The acid growth theory of auxin-induced cell elongation is alive and well. Plant Physiology, 1992,99(4):1271-1274.
[8]  Irving HR, Gehring CA, Parish RW. Changes in cytosolic pH and calcium of guard cells precede stomatal movements. Proceedings of the National Academy of Sciences of the United States of America, 1992,89(5):1790-1794.
[9]  高为,张烨.垃圾焚烧飞灰浸出液中重金属对藻类的毒性.环境科技,2009,22(1):24-26.
[10]  姜彬慧,林碧琴.重金属对藻类的毒性作用研究进展.辽宁大学学报:自然科学版,2000,27(3):281-287.
[11]  蔡佳亮,黄艺,郑维爽.生物吸附剂对废水重金属污染物的吸附过程和影响因子研究进展.农业环境科学学报,2008,27(4):1297-1305.
[12]  陈利,陈国祥,周泉澄等.根际pH与镉共同胁迫下对超高产杂交稻幼苗光合特性的影响.农业环境科学学报,2005,24(1):12-16.
[13]  Ding BZ, Shi GX, Xu Y et al. Physiological responses of Alternanthera philoxeroides(Mart.) Griseb leaves to cadmium stress. Environmental Pollution, 2007,147(3):800-803.
[14]  Calba H, Cazevieille P, Thée C et al. The dynamics of protons, aluminium and calcium in the rhizosphere of maize cultivated in tropical acid soils, experimental study and modelling. Plant and Soil, 2004,260(1/2):33-46.
[15]  黄宏霞.钝顶螺旋藻对Cu2+和Cd2+吸附特性的研究[学位论文].武汉:华中农业大学,2006.
[16]  Gadd GM. Biosorption:critical review of scientific rationale, environmental importance and significance for pollution treatment. Journal of Chemical Technology and Biotechnology, 2009,84(1):13-28.
[17]  Shanker AK, Djanaguiraman M, Sudhagar R et al. Differential antioxidative response of ascorbate glutathione pathway enzymes and metabolites to chromium speciation stress in green gram (Vigna radiata L.). Plant Science, 2004,166(4):1035-1043.
[18]  Shanker AK. Physiological, biochemical and molecular aspects of chromium toxicity and tolerance in selected crops and tree species[Dissertation]. Coimbatore:Tamil Nadu Agricultural University, 2003.
[19]  Inal A, Pilbeam DJ, Gunes A. Silicon increases tolerance to boron toxicity and reduces oxidative damage in barley. Journal of Plant Nutrition, 2009,32(1):112-128.
[20]  闵海丽,蔡三娟,徐勤松等.外源钙对黑藻抗镉胁迫能力的影响.生态学报,2012,32(1):256-264.
[21]  Schiavon M, Pilon-Smits EAH, Wirtz M et al. Interactions between chromium and sulfur metabolism. Journal of Environmental Quality, 2008,37(4):1536-1545.
[22]  Geng CN, Zhu YG, Liu WJ et al. Arsenate uptake and translocation in seedlings of two genotypes of rice is affected by external phosphate concentrations. Aquatic Botany, 2005,83:321-331.
[23]  Malec P, Waloszek A, Prasad MNV et al. Zinc reversal of cadmium-induced energy transfer changes in photosystem Ⅱ of Ceratophyllum demersum L. as observed by whole-leaf 77K fluorescence. Plant Stress, 2008,2:121-126.
[24]  Stobart AK, Griffiths WT, Ameen-Bukhari I et al. The effect of Cd2+ on the biosynthesis of chlorophyll in leaves of barley. Physiologia Plantarum, 1985,63(3):293-298.
[25]  Yeh CM, Hung WC, Huang HJ. Copper treatment activates mitogen-activated protein kinase signalling in rice. Physiologia Plantarum, 2003,119(3):392-399.
[26]  陈霖,姜岩,汪鹏合等.镍胁迫对菹草(Potamogeton crispus L.) 活性氧及脯氨酸代谢的影响.湖泊科学,2013,25(1):131-137.
[27]  汪良驹,刘友良,马凯.盐胁迫下无花果细胞质膜和液泡膜H+-ATPase 活性对脯氨酸积累的影响.植物生理学报,2000,26(3):232-236.
[28]  Vuosku J, Suorsa M, Ruottinen M et al. Polyamine metabolism during exponential growth transition in Scots pine embryogenic cell culture. Tree Physiology, 2012,32(10):1274-1287.
[29]  Young ND, Galston AW. Putrescine and acid stress induction of arginine decarboxylase activity and putrescine accumulation by low pH. Plant Physiology, 1983,71(4):767-771.
[30]  Bouchereau A, Aziz A, Larher F et al. Polyamines and environmental challenges:recent development. Plant Science, 1999,140(2):103-125.
[31]  Roy P, Niyogi K, SenGupta DN et al. Spermidine treatment to rice seedlings recovers salinity stress-induced damage of plasma membrane and PM-bound H+-ATPase in salt-tolerant and salt-sensitive rice cultivars. Plant Science, 2005,168(3):583-591.
[32]  Roussos PA, Pontikis CA. Changes of free, soluble conjugated and bound polyamine titers of jojoba explants under sodium chloride salinity in vitro. Journal of Plant Physiology, 2007,164(7):895-903.
[33]  Shanker AK, Cervantes C, Loza-Tavera H. Chromium toxicity in plants. Environmental International, 2005,31(5):739-753.
[34]  Gardea JL, Peralta JR, Montes M et al. Bioaccumulation of cadmium, chromium and copper by Convolvulus arvensis L.:impact on plant growth and uptake of nutritional elements. Bioresource Technology, 2004,92(3):229-235.
[35]  Dixit V, Pandey V, Shyam R. Chromium ions inactivate electron transport and enhance superoxide generation in vivo in pea (Pisum sativum L.) root mitochondria. Plant, Cell, and Environment, 2002,25(5):687-693.
[36]  Wang C, Zhu YL, Yang LF et al. Effects of NaCl stress on polyamines metabolism in vegetable soybean. Chinese Journal of Applied Ecology, 2011,22(11):2883-2893.
[37]  Alcázar R, Marco F, Cuevas JC et al. Involvement of polyamines in plant response to abiotic stress. Technology Letters, 2006,28:1867-1876.
[38]  Groppa MD, Benavides MP. Polyamines and abiotic stress:recent advances. Amino Acids, 2008,34:35-45.
[39]  Yang HY, Shi GX, Wang H et al. Involvement of polyamines in adaptation of Potamogeton crispus L. to cadmium stress. Aquatic Toxicology, 2010,100:282-288.
[40]  Lichtenthaler HK. Chlorophylls and carotenoids:pigments of photosynthetic biomembranes. Methods in Enzymology, 1987,148:350-382.
[41]  更多...
[42]  王爱国,罗广华.植物的超氧自由基与羟胺反应的定量关系.植物生理学通讯,1990,6:55-57.
[43]  李合生.植物生理生化实验原理和技术.北京:高等教育出版社,2000:164-165.
[44]  Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water-stress studies. Plant and Soil, 1973,39(1):205-207.
[45]  Aziz A, Larher F. Changes in polyamine titers associated with the proline response and osmotic adjustment of rape leaf discs submitted to osmotic stresses. Plant Science, 1995,112:175-186.
[46]  王红霞,胡金朝,施国新等.外源多胺对铜胁迫下水鳖叶片多胺代谢、抗氧化系统和矿质营养元素的影响.生态学报,2010,30(10):2784-2792.
[47]  Demetriou G, Neonaki C, Navakoudis E et al. Salt stress impact on the molecular structure and function of the photosynthetic apparatus. Biochimica et Biophysica Acta, 2007,1767(4):272-280.
[48]  陈辉,施国新,徐勤松等.Cr6+对菹草叶绿素荧光参数、抗氧化系统和超微结构的胁迫影响.植物研究,2009,29(5):559-564.
[49]  Gunawan MI, Barringer SA. Green color degradation of blanched broccoli (Brassica oleracea) due to acid and microbial growth. Journal of Food Processing and Preservation, 2000,24(3):253-263.
[50]  孙涛,张玉秀,柴团耀.印度芥菜(Brassica juncea L.) 重金属耐性机理研究进展.中国生态农业学报,2011,19(1):226-234.
[51]  杜琳,张荃.植物谷胱甘肽与抗氧化胁迫.山东科学,2008,21(2):28-32.
[52]  肖强,郑海雷, 陈瑶等.盐度对互花米草生长及脯氨酸、可溶性糖和蛋白质含量的影响.生态学杂志,2005,24(4):373-376.
[53]  Bors W, Langebartels C, Michel C et al. Polyamines as radical scavengers and protectants against ozone damage. Phytochemistry, 1989,28:1589-1595.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133