全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
湖泊科学  2014 

光照强度对水华微囊藻(Microcystisflos-aquae)群体大小增长的影响

DOI: 10.18307/2014.0410

Keywords: 光照强度,水华微囊藻,群体大小,胞外多糖,太湖

Full-Text   Cite this paper   Add to My Lib

Abstract:

大量微囊藻群体的形成和聚集是微囊藻水华形成的重要条件.光照强度是影响微囊藻生长的重要因素之一.为了了解光照强度对水华微囊藻(Microcystisflos-aquae)群体大小增长的影响,以太湖微囊藻水华优势种之一的水华微囊藻作为研究对象,开展了不同光照强度对水华微囊藻群体大小增长的影响研究.共设置5个不同光强处理组,依次为G1:2000lx;G2:4000lx;G3:8000lx;G4:16000lx;G5:变化光照强度(模拟野外光强).实验期间,G1~G5组大于100细胞群体的平均大小分别为255、480、630、763和662cells/群体.胞外多糖含量分析显示水华微囊藻形成的群体越大,胞外多糖含量越高.结果表明,低光照强度不利于太湖水华微囊藻群体大小的增长,而变化光照强度和高光照强度有利于水华微囊藻群体大小的增长.研究结果解释了太湖夏季野外变化光照强度和高光照强度有利于微囊藻水华形成的原因.

References

[1]  Reynolds CS. Cyanobacterial water blooms. Advances in Botanical Research, 1987,13:67-143.
[2]  吴忠兴.我国微囊藻多样性分析及其种群优势的生理学机制研究[学位论文].武汉:中国科学院水生生物研究所,2006:80-96.
[3]  Yang Z, Kong FX, Yang Z et al. Effect of filtered cultures of flagellate Ochromonas sp. on colony formation in Microcystis aeruginosa. International Review of Hydrobiology, 2009,94(2):143-152.
[4]  Jang MH, Ha K, Joo GJ et al. Toxin production of cyanobacteria is increased by exposure to zooplankton. Freshwater Biology, 2003,48:1540-1550.
[5]  Shen H, Niu Y, Xie P et al. Morphological and physiological changes in Microcystis aeruginosa as a result of interactions with heterotrophic bacteria. Freshwater Biology, 2011,56(6):1065-1080.
[6]  Sedmak B, Eler?ek T. Microcystins induce morphological and physiological changes in selected representative phytoplanktons. Microbial Ecology, 2005,50:298-305.
[7]  阳振.微囊藻群体形成的驱动因子研究[学位论文].南京:中国科学院南京地理与湖泊研究所,2010.
[8]  刘春光,金相灿,邱金泉等.光照与磷的交互作用对两种淡水藻类生长的影响.中国环境科学,2005,25(1):32-36.
[9]  Zhou Y, Zheng LL, Wang W et al. Combined effects of temperature, light intensity, and nitrogen concentration on the growth and polysaccharide content of Microcystis aeruginosa in batch culture. Biochemical Systematics and Ecology, 2012,41:130-135.
[10]  Esposito S, Botte V, Ludicone D et al. Numerical analysis of cumulative impact of phytoplankton photoresponses to light variation on carbon assimilation. Journal of Theoretical Biology, 2009,261:361-371.
[11]  秦伯强,杨柳燕,陈非洲等.湖泊富营养化发生机制与控制技术及其应用.科学通报,2006,51(16):1857-1866.
[12]  Rippka R, Deruelles J, Waterbury JB et al. Genetic assignments, strain histories and properties of pure cultures of cyanobacteria. Journal of General Microbiology, 1979,111:1-61.
[13]  Cao HS, Yang Z. Variation in colony size of Microcystis aeruginosa in a eutrophic lake during recruitment and bloom formation. Journal of Freshwater Ecology, 2010,25(3):331-335.
[14]  Huisman J, Jonker RR, Zonneveld C et al. Competition for light between phytoplankton species:Experimental tests of mechanistic theory. Ecology, 1999,80(1):211-222.
[15]  张民,孔繁翔.单细胞和群体微囊藻光化学响应的差异.中国水环境污染控制与生态修复技术学术研讨会,2008.
[16]  Moreno J, Vargas MA, Olivares H et al. Exopolysaccharide production by the cyanobacterium Anabaena sp. ATCC 33047 in batch and continuous culture. Journal of Biotechnology, 1998,60:175-182.
[17]  Nicolaus B, Panico A, Lama L et al. Chemical composition and production of exopolysaccharides from representative members of heterocystous and non-heterocystous cyanobacteria. Phytochemistry, 1999,52(4):639-647.
[18]  Roux JM. Production of polysaccharide slime by microbial mats in the hypersaline environment of a western Australian solar saltfield. International Journal of Salt Lake Research, 1996,5(2):103-130.
[19]  Otero A, Vincenzini M. Extracellular polysaccharide synthesis by Nostoc strains as affected by N source and light intensity. Journal of Biotechnology, 2003,102(2):143-152.
[20]  施军琼,马剑敏,吴忠兴.环境因子对铜绿微囊藻7820胞外多糖的影响.河南师范大学学报,2008,36(5):119-123.
[21]  Paerl W, Fulton RS, Moisander PH et al. Harmful freshwater algal blooms, with an emphasis on Cyanobacteria. Science World, 2001, (1):76-113.
[22]  陈宇炜,高锡云,陈伟民等.太湖微囊藻的生长特征及其分离纯培养的初步研究.湖泊科学,1999,11(4):351-355.
[23]  Chen YW, Qin BQ, Teubner K et al. Long-term dynamics of phytoplankton assemblages, Microcystis domination in Lake Taihu, a large shallow lake in China. Journal of Plankton Research, 2003,25(4):445-453.
[24]  Qin BQ, Xu PZ, Wu QL et al. Environmental issues of Lake Taihu, China. Hydrobiology, 2007,581(1):3-14.
[25]  Burkert U, Hyenstrand P, Drakare S et al. Effects of the mixotrophic flagellate Ochromonas sp. on colony formation in Microcystis aeruginosa. Aquatic Ecology, 2001,35(1):11-17.
[26]  Li YG, Gao KS.Photosynthetic physiology and growth as a function of colony size in the cyanobacterium Nostoc sphaeroides. European Journal of Phycology, 2004,39(1):9-15.
[27]  Wallace, Brett B. Simulation of water-bloom formation in the cyanobacterium Microcystis aeruginosa. Journal of Plankton Research, 2000,22(6):1127-1138.
[28]  Hutchinson GE. A treatise on limnology. New York:Wiley, 1957.
[29]  Reynolds CS. The ecology of freshwater phytoplankton. Cambridge:Cambridge University Press, 1984.
[30]  Oliver RL, Ganf GG. Freshwater blooms. Dordrecht:Kluwer Academic Publishers, 2000:149-194.
[31]  Wu XD, Kong FX. Effects of light and wind speed on the vertical distribution of Microcystis aeruginosa colonies of different sizes during a summer bloom. International Review of Hydrobiology, 2009,94(3):258-266.
[32]  Reynolds CS, Jaworski GHM, Cmiech HA et al. On the annual cycle of the blue-green alga Microcystis aeruginosa Kütz. Philosophical Transactions of the Royal Society of London B-Biological Science, 1981,293:419-477.
[33]  Bolch CJ, Blackburn SI. Isolation and purification of Australian isolates of the toxic cyanobacterium Microcystis aeruginosa Kütz. Journal of Applied Phycology, 1996,8:5-13.
[34]  Yang Z, Kong FX, Shi XL et al. Changes in the morphology and polysaccharide content of Microcystis aeruginosa (Cyanobacteria) during flagellate grazing. Journal of Phycology, 2008,44:716-720.
[35]  Friedman C, Dubinsky Z, Arad SM.Effect of light-intensity on growth and polysaccharide production in red and blue-green Rhodophyta unicells. Bioresource Technology, 1991,38:105-110.
[36]  更多...
[37]  Shi XL, Yang LY, Wang FP et al. Growth and phosphate uptake kinetics of Microcystis aeruginosa under various environmental conditions. Environmental Science, 2004,16:288-292.
[38]  庄树宏,Hendrik S.光强和光质对底栖藻类群落影响Ⅱ.群落和种群的动态和适应模式.生态学报,2001,21(12):2057-2066.
[39]  陈雪初,孙扬才,曾晓文等.低光照度对源水中铜绿微囊藻增殖的抑制作用.中国环境科学,2007,27(3):352-355.
[40]  Zhou Y, Liu Y, Ge J et al. Aggregate formation and polysaccharide content of Chlorella pyrenoidosa Chick (Chlorophyta) in response to simulated nutrient stress. Bioresource Technology, 2010,101:8336-8341.
[41]  Waddington CH. Genetic assimilation of an acquired character. Evolution, 1953,7(2):118-126.
[42]  Bradshaw AD. Evolutionary significance of phenotypic plasticity in plants. Advances in Genomics and Genetics, 1965,13:115-155.
[43]  Pajdak-sts A, Fislkowska E, Fyda J. Phormidium autumnale (Cyanobacteria) defense against three ciliate grazer species. Aquatic Microbial Ecology, 2001,23:237-244.
[44]  de Philippis R, Margheri MC, Pelosi E et al. Exopolysaccharide production by a unicellularcyanobacterium isolated from a hypersaline habitat. Journal of Applied Phycology, 1993,5(4):387-394.
[45]  Wustman BA, Gretz MR, Hoagland KD. Extracellular matrix assembly in diatoms(Bacillariophyceae)(I.A model of adhesives based on chemical characterization and localization of polysaccharides from the marine diatom Achnanthes longipes and other diatoms). Plant Physiology, 1997,113(4):1059-1069.
[46]  Van RM, Janse I, Noordkamp DJB et al. An inventory of factors that effect polysaccharide production by Phaeocystis globosa. Journal of Sea Research, 2000,43:297-306.
[47]  Thornton D. Diatom aggregation in the sea:mechanisms and ecological. European Journal of Phycology, 2002,37:149-161.
[48]  杨桂军.浮游植物对营养盐和浮游动物胁迫的响应研究[学位论文].南京:中国科学院南京地理与湖泊研究所,2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133