全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
湖泊科学  2014 

外源钙对菹草(PotamogetoncrispusL.)汞胁迫的影响效应

DOI: 10.18307/2014.0313

Keywords: 菹草,,外源钙,氧化胁迫,多胺

Full-Text   Cite this paper   Add to My Lib

Abstract:

以组织培养的菹草无菌苗为实验材料,研究了外源Ca(NO3)2的添加对汞(Hg)胁迫下菹草体内Hg积累、矿质元素、光合色素、活性氧、丙二醛(MDA)、维生素C(VC)、维生素E(VE)、谷胱甘肽(GSH)以及多胺(PAs)代谢产生的影响效应机制.结果表明:(1)Hg胁迫下,菹草体内Hg大量积累,达165.79μg/g(FW),并伴随矿质元素P、K、Fe、Mg和Na含量的明显降低.外源Ca(NO3)2的添加很大程度上可抑制菹草体内Hg积累,使其降至110.15μg/g(FW),并减轻Hg胁迫所造成的元素失衡;(2)Hg胁迫使菹草体内光合色素含量及叶绿素a/b值大幅降低,并诱导积累大量超氧阴离子、过氧化氢及MDA,同时VC、VE和GSH含量显著提升.外源Ca(NO3)2的添加则减缓了菹草体内光合色素的分解,降低活性氧水平,减轻了膜脂过氧化程度,更使VC、VE及GSH含量在一定程度上恢复到正常水平;(3)Hg胁迫下,伴随着多胺氧化酶、二胺氧化酶和精氨酸脱羧酶活性的显著提升以及鸟氨酸脱羧酶活性的降低,导致菹草体内腐胺(Put)、精胺(Spm)含量明显降低,亚精胺(Spd)含量及游离态(Spd+Spm)/Put比值轻微增加.而外源Ca(NO3)2添加后,菹草通过调节体内PAs代谢酶活性,改变了Hg胁迫下PAs含量变化,主要表现为Put、Spm含量回升显著,游离态(Spd+Spm)/Put比值进一步升高.综上所述,外源Ca的添加可抑制Hg的吸收并参与调节多胺代谢,通过内源多胺含量的改变抑制了植物体内活性氧的积累、膜脂过氧化、光合色素及抗氧化物质的分解,增强菹草无菌苗对重金属Hg的耐受力,对减轻植物Hg胁迫有重要作用.

References

[1]  陈因,方大惟.钙对蓝藻固氮受氯化钠胁迫的缓解效应及其与生理条件的关系.热带亚热带植物学报,1994,2(4):88-94.
[2]  高健,杨劭.沉水植物菹草的组织培养和快速繁殖.植物生理学通讯,2006,42(2):251-252.
[3]  更多...
[4]  Lichtenthaler HK. Chlorophylls and carotenoids:pigments of photosynthetic biomembrances. Methods in Enzymology, 1987,148:350-382.
[5]  Suzuki N. Alleviation by calcium of cadmium of cadmium-induced root growth inhibition in Arabidopsis seedlings. Plant Biotechnology, 2005,22(1):19-25.
[6]  计汪栋,施国新,张慧等.菹草对Hg2+胁迫的生理和结构应答反应.生态学报,2007,27(7):2856-2863.
[7]  Monteiro MS, Santos C, Mann RM. Assessment of biomarkers of cadmium stress in lettuce. Ecotoxicology and Environmental Safety, 2009,72(3):811-818.
[8]  Calleja MA, Vieites JM, Meterdez TM et al. The antioxidant effect of β-caryophyllene protects rat liver from carbon tetrachloride-induced fibrosis by inhibiting hepatic stellate cell activation. British Journal of Nutrition, 2013,109(3):394-401.
[9]  Yang HY, Shi GX, Wang HX et al. Involvement of polyamines in adaptation of Potamogeton crispus L. to cadmium stress. Aquatic Toxicology, 2010,100(3):282-288.
[10]  杜琳,张荃.植物谷胱甘肽与抗氧化胁迫.山东科学,2008,21(2):28-32.
[11]  Lu LL, Tian SK. The role of Ca pathway in Cd uptake and translocation by the hyperaccumulator Sedum alfredii. Journal of Hazardous Materials, 2010,183(1/2/3):22-28.
[12]  徐勤松,施国新,杜开和.锌胁迫下水车前叶细胞自由基过氧化损伤与超微结构变化之间关系的研究.植物学通报,2001,18(5):597-604.
[13]  Tiburcio AF, Campos JL, Figueras X et al. Recent advances in the understanding of polymine functions during plant development. Plant Growth Regulation, 1993,12(3):331-340.
[14]  Roussos PA, Pontikis CA. Changes of free, soluble conjugated and bound polyamine titers of jojoba explants under sodium chloride salnity in vitro. Journal of Plant Physiology, 2007,164(7):895-903.
[15]  Groppa MD, Tomaro ML, Benavides MP. Polyamines as protectors against cadmium or copper-induced oxidative damage in sunflower leaf discs. Plant Science, 2001,161(3):481-488.
[16]  Tarenghi E, Martin-Tanguy J. Polyamines, floral induction and floral development of strawberry (Fragaria ananassa Duch.). Plant Growth Regulation, 1995,17(2):157-165.
[17]  Evans AEV, Hanjrab MA, Jiang Y et al. Water quality:assessment of the current situation in Asia. International Journal of Water Resources Development, 2012,28(2):195-216.
[18]  李嗣新,汪红军,周连凤等.流域水体污染的生态学效应及监测预警.应用与环境生物学报,2011,17(2):268-272.
[19]  刘洪波,杨健,甘居利.太湖五里湖水域背角无齿蚌中汞的残留.农业环境科学学报,2009,28(2):411-415.
[20]  刘恩峰,沈吉,朱育新等.太湖沉积物重金属及营养盐污染研究.沉积学报,2004,22(3):507-512.
[21]  Mor IR, Gokani SJ, Chanda SV. Effect of mercury toxicity on hypocotyl elongation and cell wall loosening in Phasealus seedlings. Journal of Plant Nutrition, 2002,25(4):843-860.
[22]  Shi GX, Xu QS, Xie KB et al. Physiology and ultrastructure of Azolla imbricate as affected by Hg and Cd toxicity. Acta Botanica Sinica, 2003,45(4):437-444.
[23]  Ali MB, Vajpayee P, Tripathi RD et al. Mercury bioaccumulation induces oxidative stress and toxicity to submerged mac-rophyte Potamogeton crispus L.. Bulletin Environmental Contamination and Toxicology, 2000,65(5):573-582.
[24]  康宜宁,吴婷婷,施国新等.汞对水花生愈伤组织生理及超微结构的毒理性效应.环境科学学报,2010,30(12):2506-2511.
[25]  Hirschi KD. The calcium conundrum. both versatile nutrient and specific signal. Plant Physiology, 2004,136(1):2438-2442.
[26]  Wang CQ, Song H. Calcium protects Trifolium repens L. seedlings against cadmium stress. Plant Cell Reports, 2009,28(9):1341-1349.
[27]  Ouzounidou G, Moustakas M, Symeonidis L et al. Response of wheat seedlings to Ni stress:effects of supplemental calcium. Archives of Environmental Contamination and Toxicology, 2006,50(3):346-352.
[28]  Durmu N, Kadio?lu A. Spermine and putrescine enhance oxidative stress tolerance in maize leaves. Acta Physiologiae Plantarum, 2005,27(4A):515-522.
[29]  Choudhary SP, Dral HV, Bhardwaj R et al. Interaction of brassinoteroids and polyamines enhances copper stress tolerance in Raphanus sativus. Journal of Experimental Botany, 2012,63(15):5659-5675.
[30]  Xu XY, Shi GX, Ding CX et al. Regulation of exogenous spermidine on the reactive oxygen species level and polyamine metabolism in Alternanthera philoxeroides (Mart.) Griseb under copper stress. Plant Growth Regulation, 2011,63(3):251-258.
[31]  Yang HY, Shi GX, Qiao XQ et al. Exogenous spermidine and spermine enhance cadmium tolerance of Potamogeton malaianus. Russian Journal of Plant Physiology, 2011,58(4):622-628.
[32]  陈书霞,周静,姜芳等.外源Ca(NO3)2对NaCl胁迫下番茄幼苗生理特征的影响.西北植物学报,2009,29(9):1867-1873.
[33]  Lu LL, Tian SK. The role of Ca pathway in Cd uptake and translocation by the hyperaccumulator Sedum alfredii. Journal of Hazardous Materials, 2010,183(1/2/3):22-28.
[34]  Zaki FT, Fathi AA. Impact of copper on some physiological aspects of Nostoc muscorum with special references to the detoxifying role of calcium. Acta Botanica Hungarica, 2004,46(3/4):423-433.
[35]  王爱国,罗广华.植物的超氧自由基与羟胺反应的定量关系.植物生理学通讯,1990,26(6):55-57.
[36]  陈建勋,王晓峰.植物生理学实验指导.广州:华南理工大学出版社,2002:122-126.
[37]  Aziz A, Larher F. Changes in polyamine titers associated with the proline response and osmotic adjustment of rape leaf discs submitted to osmotic stresses. Plant Science, 1995,112(2):175-186.
[38]  Zhao FG, Sun C, Liu YL et al. Relationship between polyamine metabolism in roots and salt tolerance of barley seedlings. Acta Botanica Sinica, 2003,45(3):295-300.
[39]  汪天,郭世荣,刘俊等.多胺氧化酶检测方法的改进及其在低氧水培黄瓜根系中的应用.植物生理学通讯,2004,40(3):358-360.
[40]  Boussama N, Ouariti O, Ghorbal MH. Changes in growth and nitrogen assimilation in barley seedlings under cadmium stress. Journal of Plant Nutrition, 1999,22(4/5):731-752.
[41]  Liu JG, Liang JS, Li KQ et al. Correlations between cadmium and mineral nutrients in absorption and accumulation in various genotypes of rice under cadmium stress. Chemosphere, 2003,52(9):1467-1473.
[42]  Ding BZ, Shi GX, Xu Y et al. Physiological responses of Alternanthera philoxeroides (Mart.) Griseb leaves to cadmium stress. Environmental Pollution, 2007,147(3):800-803.
[43]  周东美,汪鹏.基于细胞膜表面电势探讨Ca与毒性离子在植物根膜表面的相互作用.中国科学:化学,2011,41(7):1190-1197.
[44]  Chattopadhayay MK, Tiwari BS, Chattopadhyay G et al. Protective role of exogenous polyamines on salinity-stressed rice (Oryza sativa) plants. Physiologia Plantarum, 2002,116(2):192-199.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133