全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
湖泊科学  2014 

温度、光照强度及硝酸盐对拟柱孢藻(CylindrospermopsisraciborskiiN8)生长的影响

DOI: 10.18307/2014.0315

Keywords: 拟柱孢藻,生长,比生长速率,温度,光照强度,硝酸盐

Full-Text   Cite this paper   Add to My Lib

Abstract:

以从南亚热带水库中分离的拟柱孢藻(CylindrospermopsisraciborskiiN8)为材料,研究了不同温度(12、16、20、24、28、32℃)、光照强度(6.6、12.4、21.5、30.7、62.9、106.4μmol/(m2·s))和硝态氮浓度(0.5、1、2、4、8、16、32、64、128mg/L)下拟柱孢藻的生长特性.结果表明:在实验设置的温度范围(16~32℃)内拟柱孢藻能够正常生长;最适温度范围为24~28℃,在28℃条件下,具有最大比生长速率,为0.189d-1;当温度为12℃时,拟柱孢藻叶绿素a浓度一直降低,显著低于其他温度组(16~32℃).在6.6~106.4μmol/(m2·s)光照强度范围内,拟柱孢藻均呈指数增长趋势,最适光照强度为30.7μmol/(m2·s),其比生长速率达到最大值,为0.156d-1;高光照强度(62.9~106.4μmol/(m2·s))下拟柱孢藻的比生长速率显著大于低光照强度(6.6~12.4μmol/(m2·s))处理组.拟柱孢藻开始指数增长的最低硝态氮浓度为4mg/L;硝态氮浓度为8mg/L时,拟柱孢藻达到最大比生长速率(0.155d-1);当硝态氮浓度高于16mg/L时比生长速率增加不显著.高硝态氮浓度组(16~128mg/L)拟柱孢藻的叶绿素a浓度和比生长速率显著高于低硝态氮浓度组(0.5~2mg/L).研究结果说明拟柱孢藻对温度、光照和氮源均有较宽的生态位,有利于在较大空间尺度上进行扩散.

References

[1]  Saker ML, Thomas AD, Norton JH. Cattle mortality attributed to the toxic CyanobacteriumCylindrospermopsis raciborskiiin an outback region of North Queensland.Environmental Toxicology, 1999,14(1):179-182.
[2]  Bernard C, Harvey M, Briand JFet al. Toxicological comparison of diverseCylindrospermopsis raciborskiis trains:evidence of liver damage caused by FrenchC.raciborskii strain.Environmental Toxicology, 2003,18(3):176-186.
[3]  Hong Y, Steinman A, Biddanda Bet al. Occurrence of the toxin-producing cyanobacteriumCylindrospermopsis raciborskiiin Mona and Muskegon Lakes, Michigan.Journal of Great Lakes Research, 2006,32:645-652.
[4]  Padisák J.Cylindrospermopsis raciborskii(Woloszynska) Seenayya and Subba Raju, an expanding highly adaptive cyanobacterium:worldwide distribution and review of its ecology. Archiv für Hydrobiologie. Supplementband. Monographische Beitr?ge, 1997,107(4):563-593.
[5]  Li R, Carmichael WW, Brittain Set al. Isolation and identification of the cyanotoxin cylindrospermopsin and deoxycylindrospermopsin from a Thailand strain ofCylindrospermopsis raciborskii(Cyanobacteria).Toxicon,2001,39(7):973-980.
[6]  Briand JF, Leboulanger C, Humbert JF.Cylindrospermopsis raciborskii (Cyanobacteria) invasion at mid-latitudes:selection, wide physiological tolerance, or global warming?Journal of Phycology, 2004,40(2):231-238.
[7]  Vidal L, Kruk C.Cylindrospermopsis raciborskii(Cyanobacteria) extends its distribution to Latitude 34°53\'S:taxonomical and ecological features in Uruguayan eutrophic lakes.Pan American Journal of Aquatic Sciences, 2008,3(2):142-151.
[8]  Briand JF, Robillot C, Quibler-Llobéras C et al. Environmental context ofCylindrospermopsis raciborskii (Cyanobacteria) blooms in a shallow pond in France.Water Research, 2002,36:3183-3192.
[9]  Kokociski M, Dziga D, Spoof Let al. First report of the cyanobacterial toxin cylindrospermopsin in the shallow,eutrophic lakes of western Poland.Chemosphere, 2003,74:669-675.
[10]  林秋奇,雷腊梅,韩博平.南亚热带不同营养水平水库的蓝藻组成与动态.生态学杂志,2007,26(7):102-103.
[11]  Bouvy M, Molica R, De Oliveira Set al. Dynamics of a toxic cyanobacterial bloomCylindrospermopsis raciborskiiin a shallow reservoir in the semi-arid region of northeast Brazil.Aquatic Microbial Ecology,1999,20:285-297.
[12]  Dokulil MT, Mayer J. Population dynamics and photosynthetic rates of aCylindrospermopsis limnothrix association in a highly eutrophic urban lake, Alte Donau, Vienna.Algological Studies, 1996,83:179-195.
[13]  Reynolds CS, Huszar V, Kruk Cet al. Towards a functional classification of the freshwater phytoplankton.Journal of Plankton Research, 2002,24(5):417-428.
[14]  Wu Z, Shi J, Li R. Comparative studies on photosynthesis and phosphate metabolism ofCylindrospermopsis raciborskiiwith Microcystis aeruginosa andAphanizomenon flos-aquae.Harmful Algae, 2009,8:910-915.
[15]  Ogawa RE, Carr JF. The influence of nitrogen on heterocyst production in blue-green algae.Limnology and Oceanography, 1969,14:342-351.
[16]  Présing M, Herodek S, V r s L et al. Nitrogen fixation, ammonium and nitrate uptake during a bloom ofCylindrospermopsis raciborskiiin Lake Balaton.Archiv für Hydrobiologie,1996,136:553-562.
[17]  See JH, Bronk DA, Lewitus AJ. Uptake of Spartina-derived humic nitrogen by estuarine phytoplankton in axenic and nonaxenic culture.Limnology and Oceanography, 2006,51:2290-2299.
[18]  Guillard RRL. Methods for microflagellates and nan-noplankton. In:Stein J ed. Handbook of phycological methods:culture methods and growth measurements. London:Cambridge University, 1973:80-81.
[19]  Goldman JC, Mann R. Temperature-influenced variations in speciation and the chemical composition of marine phytoplankton in outdoor mass cultures.Journal of Experimental Marine Biology and Ecology, 1980,46:29-39.
[20]  Parke M. Studies on marine flagellates.Journal of the Marine Biological Association of the United Kingdom,1949,28:255-285.
[21]  更多...
[22]  Soares MCS, de Rocha MIA, Marinho MMet al. Changes in species composition during annual cyanobacterial dominance in a tropical reservoir:physical factors, nutrients and grazing effects.Aquatic Microbial Ecology, 2009,57:137-149.
[23]  孙育平,王晓辉,胡韧等.南亚热带高产渔业水库——显岗水库敞水区浮游植物群落结构的季节变化特征.应用与环境生物学报,2010,16(2):228-234.
[24]  Shafik HM, Herodek S, Présing Met al. Factors affecting growth and cell composition of cyanoprocaryoteCylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju.Archiv für Hydrobiologie,Algological Studies, 2001,103:75-93.
[25]  Soares MCS, Lürling M, Huszar VLM. Growth and temperature-related phenotypic plasticity in the cyanobacteriumCylindrospermopsis raciborskii.Phycological Research,2013,61:61-67.
[26]  Fabbro LD, Duivenvoorden LJ. Profile of a bloom of the cyanobacteriumCylindrospermopsis raciborskii(Woloszynska) Seenaya and Subba Raju in the Fitzroy River in tropical central Queensland.Marine and Freshwater Research, 1996,47(5):685-694.
[27]  Shafik HM. Morphological characteristics ofCylindrospermopsis raciborskii (Woloszynka) Seenaya et Subba Raju in laboratory cultures.Acta Biologica Hungarica, 2003,54:121-136.
[28]  Dyble J, Tester PA, Litaker RW. Effects of light intensity on cylindrospermopsin production in the cyanobacterial HAB species Cylindrospermopsis raciborskii.African Journal of Marine Science, 2006,28(2):309-312.
[29]  Stewart WDP. Nitrogen fixation by photosynthetic microorganisms.Annual Review of Microbiology,1973,27:283-316.
[30]  Moisander PH, Cheshire LA, Braddy J et al. Facultative diazotrophy increases Cylindrospermopsis raciborskii competitiveness under fluctuating nitrogen availability. FEMS Microbiology Ecology, 2012,79:801-811.
[31]  杨柳,章铭,刘正文.太湖春季浮游植物群落对不同形态氮的吸收.湖泊科学,2011,23(4):605-611.
[32]  Gu B, Havens K, Schelske Cet al. Uptake of dissolved nitrogen by phytoplankton in a eutrophic subtropical lake. Journal of Plankton Research, 1997,19(6):759-770.
[33]  Burford MA, O\'Donohue MJ. A comparison of phytoplankton community assemblages in artificially and naturally mixed subtropical water reservoirs. Freshwater Biology, 2006,51(5):973-982.
[34]  Spr ber P, Shafik HM, Préssing Met al. Nitrogen uptake and fixation in the cyanobacteriumCylindrospermopsis raciborskii under different nitrogen conditions. Hydrobiologia,2003,506-509:169-174.
[35]  Moisander PH, Paerl HW, Zehr JP. Effects of inorganic nitrogen on taxa-specific cyanobacterial growth andnifHexpression in a subtropical estuary.Limnology and Oceanography, 2008,53(6):2519-2532.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133