全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
湖泊科学  2014 

氮、磷浓度对太湖水华微囊藻(Microcystisflos-aquae)群体生长的影响

DOI: 10.18307/2014.0207

Keywords: 水华微囊藻,群体,,,太湖

Full-Text   Cite this paper   Add to My Lib

Abstract:

大量微囊藻群体的形成和聚集是微囊藻水华形成的重要条件.氮、磷浓度是影响微囊藻群体生长的重要因素之一.为了探讨氮、磷浓度对微囊藻群体生长的影响,本研究以太湖微囊藻水华优势种之一的水华微囊藻作为研究对象,开展了不同氮、磷浓度对水华微囊藻群体生长的影响研究.以近几年太湖微囊藻水华暴发最严重的梅梁湾氮磷比的平均值作参考,氮、磷浓度设置为5个水平组,依次是T1(TN=0.1mg/L,TP=0.005mg/L)、T2(TN=1mg/L,TP=0.05mg/L)、T3(TN=10mg/L,TP=0.5mg/L)、T4(TN=100mg/L,TP=5mg/L)和T5(TN=250mg/L,TP=5.44mg/L)(BG-11培养基中氮、磷的浓度).结果显示,T1、T2、T3和T44组微囊藻群体均增大,且都发现有大于100个细胞的群体形成,群体大小分别为151、217、437和160cells,而T5组微囊藻群体实验初期增大,实验后期变小,T5整个实验期间未发现有大于100个细胞的群体形成.研究结果表明相对低的氮、磷浓度有利于水华微囊藻群体的生长,而过高的氮、磷浓度则会抑制微囊藻群体生长.本研究结果也表明目前太湖氮、磷浓度有利于水华微囊藻群体的生长,从而有利于微囊藻水华形成.

References

[1]  Pajdak-Stós A,Fialkowska E,Fyda J. Phormidium autumnale (cyanobacteria) defense against three ciliate grazer species. Aquatic Microbial Ecology,2000,23(3):237-244.
[2]  Van Rijssel M,Janse I,Noordkamp DJB et al. An inventory of factors that effect polysaccharide production by Phaeocystis globosa. Journal of Sea Research,2000,43(3):297-306.
[3]  Thornton D. Diatom aggregation in the sea:mechanisms and ecological. European Journal of Phycology,2002,37(2):149-161.
[4]  张民,孔繁翔. 单细胞和群体微囊藻光化学响应的差异. 中国水环境污染控制与生态修复技术学术研讨会,2008.
[5]  Moreno J,Vargas MA,Olivares H et al. Exopolysaccharide production by the cyanobacterium Anabaena sp. ATCC 33047 in batch and continuous culture. Journal of Biotechnology,1998,60(3):175-182.
[6]  雷腊梅,宋立荣,欧丹云等. 营养条件对水华蓝藻铜绿微囊藻的胞外多糖产生的影响. 中山大学学报,2007,46(3):85-87.
[7]  Hecky RE,Kvilham P. Nutrient limitation of phytoplankton in freshwater and marine environment:a review of recent evidence on the effects of enrichment. Limnology and Oceanography,1988,33(4):796-822.
[8]  Zhang M,Kong FX,Tan X et al. Biochemical,morphological and genetical variations in Microcystis aeruginosa due to colony disaggregation. World Journal of Microbiology and Biotechnology,2007,23(5):663-670.
[9]  De Philippis R,Margheri MC,Pelosi E et al. Exopolysaccharide production by a unicellular cyanobacterium isolated from a hypersaline habitat. Journal of Applied Phycology,1993,5(4):387-394.
[10]  Nicolaus B,Panico A,Lama L et al. Chemical composition and production of exopolysaccharides from representative members of heterocystous and non-heterocystous cyanobacteria. Phytochemistry,1999,52(4):639-647.
[11]  Yang LY,Wang Q,Shi XL et al. Phosphorus metabolism of Microcystis aeruginosa during its growth process. Journal of Agro-Environment Science,2005,24(4):686-689.
[12]  Schmalhausen Ⅱ. Factors of evolution:The theory of stabilizing selection. Chicago:University of Chicago Press,1949.
[13]  何家菀,何振荣,余家禄. 东湖铜绿微囊藻毒素的分离与鉴定. 海洋与湖沼,1988,19(5):424-430.
[14]  Waddington CH. Genetic assimilation of an acquired character. Evolution,1953,7(2):118-126.
[15]  Wustman BA,Gretz MR,Hoagland KD. Extracellular matrix assembly in diatoms(Bacillariophyceae) (I. A model of adhesives based on chemical characterization and localization of polysaccharides from the marine diatom Achnanthes longipes and other diatoms). Plant Physiology,1997,113(4):1059-1069.
[16]  De Philippis R,Vincenzini M. Exocellular polysaccharides from cyanobacteria and their possible applications. FEMS Microbiology Reviews,1998,22(3):151-175.
[17]  Roux JM. Production of polysaccharide slime by microbial mats in the hypersaline environment of a western Australian solar saltfield. International Journal of Salt Lake Research,1996,5(2):103-130.
[18]  Konopka A. The effect of nutrient limitation and its interaction with light upon the products of photosynthesis in Merismopedia tenuissima (Cyanophyceae). Journal of Phycology,1983,19(4):403-409.
[19]  Chen YW,Qin BQ,Teubner K et al. Long-term dynamics of phytoplankton assemblages,Microcystis domination in Lake Taihu,a large shallow lake in China. Journal of Plankton Research,2003,25(4):445-453.
[20]  Li YG,Gao KS. Photosynthetic physiology and growth as a function of colony size in the cyanobacterium Nostoc sphaeroides. European Journal of Phycology,2004,39(1):9-15.
[21]  Wallace BB,Hamilton DP. Simulation of water-bloom formation in the cyanobacterium Microcystis aeruginosa. Journal of Plankton Research,2000,22(6):1127-1138.
[22]  Burkert U,Hyenstrand P,Drakare S et al. Effects of the mixotrophic flagellate Ochromonas sp. on colony formation in Microcystis aeruginosa. Aquantic Ecology,2001,35(1):11-17.
[23]  Hutchinson GE. A treatise on limnology. New York:John Wiley & Sons Inc.,1957.
[24]  Reynolds CS. The ecology of freshwater phytoplankton. Cambridge:Cambridge University Press,1984.
[25]  Reynolds CS. Cyanobacterial water blooms. Advances in Botanical Research Incorporating Advances in Plant Pathology, 1987,13:67-143.
[26]  Oliver RL,Ganf GG. Freshwater blooms. Dordrecht:Kluwer Academic Publishers,2000:149-194.
[27]  Wu XD,Kong FX. Effects of light and wind speed on the vertical distribution of Microcystis aeruginosa colonies of different sizes during a summer bloom. International Review of Hydrobiology,2009,94(3):258-266.
[28]  Cao HS,Yang Z. Variation incolony size of Microcystis aeruginosa in a eutrophic lake during recruitment and bloom formation. Journal of Freshwater Ecology,2010,25(3):331-335.
[29]  Reynolds CS,Jaworski GHM,Cmiech HA et al. On the annual cycle of the blue-green alga Microcystis aeruginosa Kütz. Emend. Elenkin. Philosophical Transactions of the Royal Society of London:Series B:Biological Sciences,1981,293(1068):419-477.
[30]  Bolch CJS,Blackburn IS. Isolation and purification of Australian isolates of the toxic cyanobacterium Microcystis aeruginosa Kütz. Journal of Applied Phycology,1996,8(1):5-13.
[31]  Yang Z,Kong FX,Shi XL et al. Changes in the morphology and polysaccharide content of Microcystis aeruginosa (cyanobacteria) during flagellate grazing. Journal of Phycology,2008,44(3):716-720.
[32]  吴忠兴. 我国微囊藻多样性分析及其种群优势的生理学机制研究[学位论文]. 武汉:中国科学院水生生物研究所,2006.
[33]  Yang Z,Kong FX,Zhang M et al. Effect of filtered cultures of flagellate Ochromonas sp. on colony formation in Microcystis aeruginosa. International Review of Hydrobiology,2009,94(2):143-152.
[34]  Jang MH,Ha K,Joo GJ et al. Toxin production of cyanobacteria is increased by exposure to zooplankton. Freshwater Biology, 2003,48(9):1540-1550.
[35]  Shen H,Niu Y,Xie P et al. Morphological and physiological changes in Microcystis aeruginosa as a result of interactions with heterotrophic bacteria. Freshwater Biology,2011,56(6):1065-1080.
[36]  Sedmak B,Eler?ek T. Microcystins induce morphological and physiological changes in selected representative phytoplanktons. Microbial Ecology,2005,50(2):298-305.
[37]  阳振. 微囊藻群体形成的驱动因子研究[学位论文]. 南京:中国科学院南京地理与湖泊研究所,2010.
[38]  Elmgren R,Larsson U. Nitrogen and the Baltic Sea:Managing nitrogen in relation to phosphorus. Scientific World Journal, 2001,1(2):371-377.
[39]  更多...
[40]  Smith VH. Eutrophication of freshwater and coastal marine ecosystems:A global problem. Environmental Science and Pollution Research,2003,10(2):126-139.
[41]  Cloern JE. Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series,2001, 210(1):223-253.
[42]  Bledsoe EL,Phlips EJ,Jett CE et al. The relationships among phytoplankton biomass,nutrient loading and hydrodynamics in an inner-shelf estuary. Ophelia,2004,58(1):29-47.
[43]  Liu X,Lu XH,Chen YW. The effects of temperature and nutrient ratios on Microcystis blooms in Lake Taihu,China:An 11-year investigation. Harmful Algae,2011,10(3):337-343.
[44]  Xie L,Xie P,Li S et al. The low TN:TP ratio,a cause or a result of Microcystis blooms. Water Research,2003,37(9):2073-2080.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133