全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
湖泊科学  2015 

水华微囊藻(Microcystisflos-aquae)生长周期中腐殖酸的释放特性

DOI: 10.18307/2015.0409

Keywords: 水华微囊藻,腐殖酸,三维荧光光谱

Full-Text   Cite this paper   Add to My Lib

Abstract:

由于严重的水体富营养化,太湖长期暴发蓝藻水华,这些蓝藻在代谢及消亡过程中大量释放包括腐植酸在内的有机物,不仅影响供水水质,并且进一步加重了水华程度.以太湖水华优势藻种——水华微囊藻(Microcystisflos-aquaeT34)为研究对象,对藻株生长周期中的藻细胞、浮游细菌进行计数,并使用TOC仪与三维荧光光谱对培养液中提取的腐殖酸进行定量与定性分析,探究水华微囊藻在生长过程中藻细胞密度、浮游细菌密度与腐殖酸浓度的变化规律.结果表明,培养液中腐殖酸浓度的变化趋势与细菌数量变化趋势一致,但与细菌数量曲线拐点相比,腐殖酸浓度曲线拐点出现两周的延迟.腐殖酸产量在藻细胞对数期较低,当水华微囊藻进入稳定期与衰亡期后,腐殖酸大量产生,其浓度迅速增加,最高可达到28.6mg/L.根据三维荧光光谱分析,水华微囊藻所产生的腐殖酸特征峰出现在(235~245nm)/(380~425nm),属于类富里酸荧光峰.本研究初步探究蓝藻与水体腐殖酸之间的关系,为水体腐殖酸来源的研究提供了新的思路.

References

[1]  刘 岩.超声声化学降解水体腐殖酸的研究.青海环境,1996, 6(1): 43-43.
[2]  姜广甲,马荣华,段洪涛.利用CDOM吸收系数估算太湖水体表层DOC浓度.环境科学, 2012, 33(7): 2235-2243.
[3]  Kim KW, Rhee D, Ozon S. Hydrogen peroxide system for degradation of humic acid in water. Advanced Materials Research, 2014, 937: 620-623.
[4]  王亚军,马 军.水体环境中天然有机质腐殖酸研究进展.腐殖酸, 2012, 21(6): 1155-1165.
[5]  崔俊涛.微生物在土壤腐殖质形成与转化中作用的研究[学位论文].长春:吉林农业大学, 2006.
[6]  Ohkubo N, Yagi O, Okada M. Effects of humic and fulvic acids on the growth of Microcystis aeruginosa. Environmental Technology, 1998, 19: 611-617.
[7]  谭 啸,孔繁翔,曾庆飞等.太湖中微囊藻群落的季节变化分析.生态与农村环境学报, 2009, 25(1): 47-52.
[8]  Li L, Gao N, Deng Y et al. Characterization of intracellular & extracellular algae organic matters (AOM) of Microcystis aeruginosa and formation of AOM-associated disinfection by products and odor & taste compounds. Water Research, 2012, 46: 1233-1240.
[9]  潘倩倩,朱梦灵,刘 洋等.阿氏浮丝藻mcyT基因序列多样性研究.水生生物学报, 2014, 38(1): 92-99.
[10]  黄 静,柴文波,李仁辉等.桥墩湖浮游植物调查以及鲢、鳙鱼产力的研究.江西师范大学学报:自然科学版, 2013, 37(5): 535-539.
[11]  Porter KG. The use of DAPI for identifying and counting aquatic microflora. Limnology and Oceanography, 1980, 25: 943-948.
[12]  Peuravuori J, Ingman P, Pihlaja K et al. Comparisons of sorption of aquatic humic matter by DAX-8 and XAD-8 resins from solid-state (13)C NMR spectroscopy\'s point of view. Talanta, 2001, 55(4): 733-742.
[13]  Hur J, Jung KY, Jung YM. Characterization of spectral responses of humic substances upon UV irradiation using two-dimensional correlation spectroscopy. Water Research, 2011, 45(9): 2965-2974.
[14]  Chai X, Liu G, Zhao X et al. Complexion between mercury and humic substances from different landfill stabilization processes and its implication for the environment. Journal of Hazardous Materials, 2012, 209: 59-66.
[15]  秦伯强,范成新.大型浅水湖泊内源营养盐释放的概念性模式探讨.中国环境科学, 2002, 22(2): 150-153.
[16]  张树清,刘秀梅,冯兆滨.腐殖酸对氮、磷、钾的吸附和解吸特性研究.腐殖酸, 2007,(2): 15-21.
[17]  马 梅,王子健,黄圣彪等. EDTA和腐殖酸对铜在淡水藻(Scenedesmus subspicatus 86.81 SAG)细胞内外分布的影响.环境科学学报, 2003, 23(2): 239-245.
[18]  叶琳琳,史小丽,吴晓东等.西太湖秋季蓝藻水华过后细胞裂解对溶解性有机碳影响.中国环境科学, 2011, 31(1): 131-136.
[19]  谢 理,杨 浩,渠晓霞等.滇池典型陆生和水生植物溶解性有机质组分的光谱分析.环境科学研究, 2013, 26(1): 72-79.
[20]  刘菲菲,冯慕华,尚丽霞等.温度对铜绿微囊藻(Microcystis aeruginosa)和鱼腥藻(Anabaena sp.)生长及胞外有机物产生的影响.湖泊科学, 2014, 26(5): 780-788.
[21]  更多...
[22]  冯华军,胡立芳,单 丹等.水体腐殖质危害及去除的研究进展.科技通报, 2008, 24(4): 553-558.
[23]  祝 鹏,华祖林,张润宇等.太湖溶解有机质光谱和氮磷污染的区域分布差异特征.环境科学研究, 2010, 23(2): 129-136.
[24]  Stedmon CA, Markager S, Bro R. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Marine Chemistry, 2003, 82(3): 239-254.
[25]  Zhang Y, van Dijk MA, Liu M et al. The contribution of phytoplankton degradation to chromophoric dissolved organic matter (CDOM) in eutrophic shallow lakes: field and experimental evidence. Water Research, 2009, 43(18): 4685-4697.
[26]  Chen X, Chuai X, Yang L et al. Climatic warming and overgrazing induced the high concentration of organic matter in Lake Hulun, a large shallow eutrophic steppe lake in northern China. Science of the Total Environment, 2012, 431: 332-338. [ 26] 祝 鹏,华祖林,张润宇等.太湖溶解有机质光谱和氮磷污染的区域分布差异特征.环境科学研究, 2010, 23(2): 129-136.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133