全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
湖泊科学  2015 

浅水湖泊湖泛(黑水团)中的微生物生态学研究进展

DOI: 10.18307/2015.0402

Keywords: 湖泛,微生物,功能,物质循环,,,互养共栖

Full-Text   Cite this paper   Add to My Lib

Abstract:

“湖泛”是指湖泊水体中(包括沉积物)富含大量藻源性(或草源性)的生物质,在微生物的分解作用下,大量消耗氧气,出现厌氧分解,微生物在还原条件下,促进许多“黑臭”物质的形成,进而影响水质和湖泊生态系统结构与功能乃至造成环境灾难.与湖泛发生时的环境特征(如低溶解氧,低pH,高有机质,高总磷、总氮)相对应的是其简化的食物网结构和特殊的微生物类群.本文将主要针对湖泛中的微生物群落及其在物质循环中的作用展开综述.研究显示湖泛水体中主要微生物类群,如真菌、细菌厚壁菌门的梭菌以及产甲烷古菌等,在有机质的快速分解和厌氧矿化过程中发挥着重要作用;沉积物中主要的微生物功能群,如硫酸盐还原细菌、铁还原细菌、甲烷厌氧氧化菌和反硝化细菌等,是湖泛致黑物质形成的关键.缺氧及厌氧条件下碳、硫和铁等元素生物地球化学过程的相互关联以及多种微生物之间形成的互营共生可能是湖泛过程中功能微生物的重要特征.湖泛中微生物功能的进一步研究,亟需借鉴海洋低氧区及深海沉积物的经验,引用先进研究手段,提出可靠的生物地球化学证据.浅水湖泊湖泛(黑水团)中的微生物生态学探索将有助于从机理上揭示湖泛黑臭的成因.

References

[1]  郑九文,邢 鹏,余多慰等.不同水生植物残体分解过程中真菌群落结构.生态学杂志, 2013, 32(2): 368-374.
[2]  Chen M, Chen F, Xing P et al. Microbial eukaryotic community in response to Microcystis spp.bloom, as assessed by an enclosure experiment in Lake Taihu, China. FEMS Microbiology Ecology, 2010, 74(1): 19-31.
[3]  Li H, Xing P, Chen M et al. Short-term bacterial community composition dynamics in response to accumulation and breakdown of Microcystis blooms. Water Research, 2011, 45: 1702-1710.
[4]  更多...
[5]  Xing P, Guo L, Tian W et al. Novel Clostridium populations involved in the anaerobic degradation of Microcystis blooms. ISME Journal, 2011, 5: 792-800.
[6]  Feng Z, Fan C, Huang W et al. Microorganisms and typical organic matter responsible for lacustrine “black bloom”. Science of the Total Environment, 2014, 470/471: 1-8.
[7]  Li H, Xing P, Wu QL. The high resilience of the bacterioplankton community in the face of a catastrophic disturbance by a heavy Microcystis bloom. FEMS Microbiology Ecology, 2012, 82: 192-201.
[8]  Wang H, Lu J, Wang W et al. Methane fluxes from the littoral zone of hypereutrophic Taihu Lake, China. Journal of Geophysical Research, 2006, 111: D17109.
[9]  Xing P, Li H, Liu Q et al. Composition of the archaeal community involved in methane production during the decomposition of Microcystis blooms in the laboratory. Canadian Journal of Microbiology, 2012, 58(10): 1153-1158.
[10]  Fan X, Wu QL. Intra-habitat differences in the composition of the methanogenic archaeal community between the Microcystis-dominated and the macrophyte-dominated bays in Taihu Lake. Geomicrobiology Journal, 2014, 31(10): 907-916.
[11]  Offre P, Spang A, Schleper C. Archaea in biogeochemical cycles. Annual Review of Microbiology, 2013, 67(1): 437-457.
[12]  Paredes CJ, Alsaker KV, Papoutsakis ET. A comparative genomic view of clostridial sporulation and physiology. Nature Reviews Microbiology, 2005, 3(12): 969-978.
[13]  Liou JSC, Balkwill DL, Drake GR et al. Clostridium carboxidivorans sp.nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp.nov. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(5): 2085-2091.
[14]  Nicolaou SA, Gaida SM, Papoutsakis ET. A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: From biofuels and chemicals, to biocatalysis and bioremediation. Metabolic Engineering, 2010, 12(4): 307-331.
[15]  Wu YF, Zheng H, Wu QL et al. Clostridium algifaecis sp.nov, a novel anaerobic bacterial species from decomposing algal scum. International Journal of Systematic and Evolutionary Microbiology, 2014, doi: 10.1099/ijs.0.064345-0.
[16]  Galperin MY. Genome diversity of spore-forming Firmicutes. Microbiology Spectrum, 2013, 1(2): TBS-0015-2012.
[17]  Xing P, Zheng J, Li H et al. Methanogen genotypes involved in methane formation during anaerobic decomposition of Microcystis blooms at different temperatures. World Journal of Microbiology and Biotechnology, 2013, 29(2): 373-377.
[18]  Sieber JR, McInerney MJ, Gunsalus RP. Genomic insights into syntrophy: the paradigm for anaerobic metabolic cooperation. Annual Review of Microbiology, 2012, 66: 429-452.
[19]  Orphan VJ, House CH, Hinrichs KU et al. Methane-consuming Archaea revealed by directly coupled isotopic and phylogenetic analysis. Science, 293: 484-487.
[20]  Ettwig KF, Shima S, van de Pas-Schoonen KT et al. Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea. Environmental Microbiology, 2008, 10(11): 3164-3173.
[21]  Ettwig KF, Butler MK, Le Paslier D et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 2010, 464:543-548.
[22]  Beal EJ, House CH, Orphan VJ. Manganese- and iron-dependent marine methane oxidation. Science, 2009, 325:184-187.
[23]  Hu BL, Shen LD, Lian X et al. Evidence for nitrite-dependent anaerobic methane oxidation as a previously overlooked microbial methane sink in wetlands. Proceedings of the National Academy of Sciences, 2014, 111(12): 4495-4500.
[24]  Boetius A, Ravenschlag K, Schubert CJ et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 2000, 407(6804): 623-626.
[25]  Plugge CM, Zhang W, Scholten JC et al. Metabolic flexibility of sulfate-reducing bacteria. Frontiers in Microbiology, 2011, 2: 81.
[26]  Leloup J, Fossing H, Kohls K et al. Sulfate-reducing bacteria in marine sediment (Aarhus Bay, Denmark): abundance and diversity related to geochemical zonation. Environmental Microbiology, 2009, 11(5): 1278-1291.
[27]  Thauer RK. Anaerobic oxidation of methane with sulfate: on the reversibility of the reactions that are catalyzed by enzymes also involved in methanogenesis from CO2. Current Opinion in Microbiology, 2011, 14: 292-299.
[28]  Beman JM, Carolan MT. Deoxygenation alters bacterial diversity and community composition in the ocean\'s largest oxygen minimum zone. Nature Communications, 2013, 4: 2705.
[29]  Diaz RJ, Rosenberg R. Spreading dead zones and consequences for marine ecosystems. Science, 2008, 321(5891): 926-929.
[30]  Sinkko H, Lukkari K, Sihvonen LM et al. Bacteria contribute to sediment nutrient release and reflect progressed eutrophication-driven hypoxia in an organic-rich continental sea. PLoS One, 2013, 8(6): e67061.
[31]  Abell GCJ, Banks J, Ross DJ et al. Effects of estuarine sediment hypoxia on nitrogen fluxes and ammonia oxidizer gene transcription. FEMS Microbiology Ecology, 2011, 75(1): 111-122.
[32]  万国江, 万恩源, 陈敬安等.深水人工湖环境生物地球化学过程研究:以贵州红枫湖百花湖为例.地球与环境, 2010, 38(3): 262-270.
[33]  Bouzat JL, Hoostal MJ, Looft T. Spatial patterns of bacterial community composition within Lake Erie sediments. Journal of Great Lakes Research, 2013, 39(2): 344-351.
[34]  Bouffard D, Ackerman JD, Boegman L. Factors affecting the development and dynamics of hypoxia in a large shallow stratified lake: Hourly to seasonal patterns. Water Resource Research, 2013, 49: 2380-2394.
[35]  Shen Q, Zhou Q, Shang J et al. Beyond hypoxia: occurrence and characteristics of black blooms due to the decomposition of the submerged plant Potamogeton crispus in a shallow lake. Journal of Environmental Sciences, 2014, 26: 281-288.
[36]  陆桂华,马 倩.太湖水域“湖泛”及其成因研究.水科学进展, 2009, 20(3): 438-442.
[37]  申秋实,邵世光,王兆德等.风浪条件下太湖藻源性湖泛的消退及其水体恢复进程.科学通报, 2012, 57(12): 1060-1066.
[38]  王成林,张 咏,张宁红等.太湖藻源性“湖泛”形成机制的气象因素分析.环境科学, 2011, 32(2): 401-408.
[39]  易梅森,段洪涛,张玉超等.浮游植物降解过程中的水体光学吸收特性变化研究.中国环境科学, 2014, 34(5): 1258-1267.
[40]  申秋实,周麒麟,邵世光等.太湖草源性“湖泛”水域沉积物营养盐释放估算.湖泊科学, 2014, 26(2): 177-184.
[41]  刘国锋,申秋实,张 雷等.藻源性黑水团环境效应: 对水沉积物界面氮磷变化的驱动作用.中国环境科学, 2010, 31(12): 2917-2924.
[42]  Li H, Xing P, Wu QL. Characterization of the bacterial community composition in a hypoxic zone induced by Microcystis blooms in Lake Taihu, China. FEMS Microbiology Ecology, 2012, 79(3): 773-784.
[43]  Bodamer BL, Bridgeman TB. Experimental dead zones: two designs for creating oxygen gradients in aquatic ecological studies. Limnology and Oceanography-Methods, 2014, 12: 441-454.
[44]  Wurzbacher CM, B?rlocher F, Grossart HP. Fungi in lake ecosystems. Aquatic Microbial Ecology, 2010, 59:125-149.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133