全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
湖泊科学  2007 

不同营养状态下附生藻类对菹草(Potamogetoncrispus)叶片光合机能的影响

DOI: 10.18307/2007.0419

Keywords: 附生藻类,荧光参数,光合机能,菹草

Full-Text   Cite this paper   Add to My Lib

Abstract:

以沉水植物——菹草为对象,实验室模拟水下弱光(100±10μmole/(m2·s)环境,进行附生藻类(生物控制和无生物控制)和营养(中营养、富营养和超富营养)双因子正交实验,探讨富营养水体附生藻类暴发对沉水植物叶片光合机能的影响。结果表明,水体营养水平提高促使菹草叶片附生藻类大量繁殖,富营养条件(TN:1mg/L;TP:0.1mg/L)下附生藻类在菹草叶片的增殖速率(Chl.a)达到0.16μg/(cm2·d)。日本沼虾+耳萝卜螺的生物控制模式能有效控制菹草叶片上附生藻类的生物量。水下原位叶绿素荧光参数观测表明,42d附生藻类引起菹草叶片光合机能下降,Chl.a密度下降25.2%,caro密度下降20.8%,PSⅡ电子产率降低9.8%,电子传递速率(ETR)下降,光化学淬灭(qP)平均下降超过60%。研究表明,水体营养水平提高促进沉水植物叶片附生藻类增殖,导致菹草光合机能下降,营养盐的作用是间接的。

References

[1]  Herbert R A.Nitrogen cycling in coastal marine ecosystems.FEMS Microbial Rev,1999,23:563 -590.
[2]  Lau S S S,Lane S N.Nutrient and grazing factors in relation to phytoplankton level in a eutrophic shallow lake:the effect of low macrophyte abundance.Water Research,2002,36:3593-3601.
[3]  Smoot J C,Langworthy D E,Levy M et al.Periphyton growth on submerged artificial substrate as a predictor of phytoplankton response to nutrient enrichment.Journal of Microbiological Methods,1998,32:11-19.
[4]  Asaeda T,Sultana M,Manatunge J et al.The effect of epiphytic algae on the growth and production of Potamogeton perfoliatus L in two light conditions.Environmental and Experimental Botany,2004,52:225-238.
[5]  Krause G H.,Weis E.Chlorophyll fluorescence and photosynthesis:the basics.Annu Rev Plant Physiol Plant Mol Biol,1991,42:313-349.
[6]  Underwood G J,Thomas C J D,Baker J H.An experimental investigation of interactions in snail-macrophyte-epiphyte systems.Oecologia,1992,91:587-595.
[7]  Fankhauser C.Light perception in plants:cytokinins and red light join forces to keep phytochrome B active.TRENDS in Plant Science,2002,7(4):143 -145.
[8]  Krupinska K,Humbeck K.Photosynthesis and chloroplast breakdown In:Noode\\'n LD\\'ed.Programmed cell death and related processes.New York:Academic Press,2003:169 -87.
[9]  Beer S,Bjork M.Measuring rates of photosynthesis of two tropical seagrasses by pulse amplitude modulated(PAM) fluorometry.Aquat Bot,2000,66:69-76.
[10]  Seddon S,Connolly R S,Edyvane K S.Large-scale seagrass die back in northern Spencer Gulf,South Australia.Aquat Bot,2000,66:297-310.
[11]  Donk E,Bund W J.Impact of submerged macrophytes including charophytes on phyto-and zooplankton communities:allelopathy versus other mechanisms.Aquat Bot,2002,72:261-274.
[12]  Laugaste R,Lessok K.Planktonic algae and epiphyton of the littoral in Lake Peipsi,Estonia.Limnologica,2004,34:90-97.
[13]  Phillips G L et al.A mechanism to account for macrophyte decline in progressively eutrophicated waters.Aquat.Bot,1978,4:103-125.
[14]  Jones J I,Eaton J W,Hardwick K.The influence of periphyton on boundary layer conditions:a pH microelectrode investigation,Aquat Bot,2000,67:191-206.
[15]  Ralph P J,Gademann R.Rapid light curves:A powerful tool to assess photosynthetic activity.Aquat Bot,2005,82:222-237.
[16]  国家环境保护总局编.水和废水检测分析方法[M].北京:中国环境科学出版社,2002.200.
[17]  李合生 孙群 等.植物组织中可溶性糖含量的测定-蒽酮比色法.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.195-197.
[18]  Schreiber U,Bilger W,Neubauer C.Chlorophyll fluorescence as a non-invasive indicator for rapid assessment of in vivo photosynthesis.In:Schulze E D,Caldwell M M Eds.Ecophysiology of Photosynthesis.Berlin, Springer-Verlag,1994:49 -70.
[19]  Havaux M,Bonfils J P,Ltz C et al.Photodamage of the photosynthetic apparatus and its dependence on the leaf developmental stage in the npq1 Arabidopsis mutant deficient in the xanthophyll cycle enzyme violaxanthin de-epoxidase.Plant Physiol,2000,124:261-273.
[20]  Kim J S,Yun B W,Choi J S et al.Death mechanisms caused by carotenoid biosynthesis inhibitors in green and in undeveloped plant tissues.Pesticide Biochemistry and Physiology,2004,78:127 -139.
[21]  更多...
[22]  Potts M D,Perkinson W C,Noodén L D.Raphanus sativus and electromagnetic fields.Bioelectrochemistry and Bioenergetics,1997,44:131-140.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133