全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
湖泊科学  2007 

吉林查干湖水体叶绿素a含量高光谱模型研究

DOI: 10.18307/2007.0308

Keywords: 查干湖,叶绿素a,高光谱,ANN-BP

Full-Text   Cite this paper   Add to My Lib

Abstract:

叶绿素a含量能够在一定程度上反映水质状况,高光谱遥感可有效反演叶绿素a含量。该研究通过分析水体叶绿素a浓度与其高光谱反射特征之间的相关关系,采用单波段相关分析、波段比值、微分光谱和神经网络模型等多种算法建立了叶绿素a高光谱定量模型。结果表明:叶绿素a与单波段光谱在蓝、绿波段相关系数较低,而在红光与近红外波段有明显提高,微分光谱也表现出同样的趋势;反射率比值算法模拟效果好于线性回归法;神经元网络模型可以大大提高实测光谱数据的反演能力,确定性系数高达0.95。这为今后利用星载高光谱传感器在查干湖进行叶绿素a浓度大面积遥感反演提供了研究基础。

References

[1]  刘冬燕,宋永昌,陈德辉.苏州河叶绿素a动态特征及其与环境因子的关联分析.上海环境科学,2003,23(2):261-264.
[2]  Gitelson A A,Garbuzov G,Szilagyi F et al.Quantitative remote sensing methods for realtime monitoring of inland waters quality.Int J Remote Sensing,1993,14(7):1269-1295.
[3]  马荣华,戴锦芳.结合LandsatETM与实测光谱估测太湖叶绿素及悬浮物含量.湖泊科学,2005,17(2):97-103.
[4]  段洪涛,张柏,宋开山等.长春市南湖叶绿素a浓度高光谱估测模型研究.水科学进展,2006,17(3):323-329.
[5]  Thiemann S,Kaufmann H.Determination of chlorophyll content and trophic state of lakes using field spectrometer and IRS-1 C satellite data in the Mecklenburg lake district,Germany.Remote Sensing of Environment,2000,73:227-235.
[6]  杨富亿.查干湖的综合开发与利用.资源开发与市场,1998,14(6):247-249,254.
[7]  于明荣,沈时德,朱明玉_查干湖水体生态环境变迁及保护利用探讨.水文水资源,1993,(5):22-24,33.
[8]  刘堂友,匡定波,尹球.湖泊藻类叶绿素-a和悬浮物浓度的高光谱定量遥感模型研究.红外与毫米 波学报,2004,23(1):11-15.
[9]  Gordon H R.Diffusive reflectance of the ocean:the theory of its augmentation by chlorophyll-a fluorescence at 685 nm.Applied Optics,1979,18:1161-1166.
[10]  蒲瑞良,宫鹏.高光谱遥感及其应用.北京:高等教育出版社,2000:53.
[11]  Bhargava D S,Mariam D W.Light penetration depth,turbidity and reflectance related relationship and models.ISPRS Journal of Photogrammetry and Remote Sensing,1991,46(4):217-230.
[12]  Pulliainen J,Kallio K,Eloheimo K et al.A semi-operative approach to lake water quality retrieval from remote sensing data.The Science of the Total Environment,2001,268:79-93.
[13]  Mittenzwey H G,Gitelson A A.Determination of chlorophyll a of inland waters on the basis of spectral reflectance.Limnol Oceanography,1992,37:147-149.
[14]  Keiner L E.A neural networks model for estimation sea surface chlorophyll and sediments from Thematic Mapper Imagery.Remote Sensing of Environment,1998,66:153-165.
[15]  李素菊,吴情,王学军等.巢湖浮游植物叶绿素含量与反射光谱特征的关系.湖泊科学,2002,14 (3);228-234.
[16]  韩震,陈西庆,恽才兴.海洋高光谱遥感研究进展.海洋科学,2003,27(l):22-25.
[17]  疏小舟,尹球,匡定波.内陆水体藻类叶绿素浓度与反射光谱特征的关系.遥感学报,2000,4(1):41-45.
[18]  Gitelson A A.The peak near 700 nm on radiance spectra of algae and water relationship of its magnitude and position with chlorophyll concentration.Int J Remote Sensing,1992,13:3367-3373.
[19]  Zhang Y,Koponen S,Pulliainen J et al.Application of empirical neural networks to chlorophyll-a estimation in coastal waters using optosensors.IEEE Sensors Journal,2003,3 (4),376-382.
[20]  周艺,周伟奇,王世新等.遥感技术在内陆水体水质监测中的应用.水科学进展,2004,15(3):312-317.
[21]  Cloutis E A.Hyperspectral geological remote sensing:evalutation of analytical techniques.Int J Remote Sensing,1996,17(12):2215-2242.
[22]  Harma P,Vepsalainena J,Hannonena T et al.Detection of water quality using simulated satellite data and semi-empirical algorithms in Finland.The Science of the Total Environment,2001,268:107-112.
[23]  更多...
[24]  Koponen S,Pulliainen J,Kallio K et al.Lake water quality classification with airborne hyperspectral spectrometer and simulated MERIS data.Remote Sensing of Environment,2002,79:51-59.
[25]  Lee Z P,Carder TG,Peacock Q 0 et al.Method to derive ocean absorption coefficients from remote-sensing reflectance.Applied Optics,1996,35:453-462.
[26]  Danson F M,Rowland C S.Training a neural network with a canopy reflectance model to estimate crop leaf area index.International Journal of Remote Sensing,2003,24(23):4891-4905.
[27]  Zhang Y,PulliainenS,Koponen et al.Application of an empirical neural network to surface water quality es-timation in the Gulf of Finland using combined optical data and microwave data.Remote Sens Environ,2002,81:327-336.
[28]  唐军武,丁静,田纪伟等.黄东海二类水体三要素浓度反演的神经网络模型.高技术通讯,2005,15 (3):83-88.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133