全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Development of a Novel Embedded Relay Lens Microscopic Hyperspectral Imaging System for Cancer Diagnosis: Use of the Mice with Oral Cancer to Be the Example

DOI: 10.1155/2012/710803

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper develops a novel embedded relay lens microscopic hyperspectral imaging system (ERL-MHSI) with high spectral resolution (nominal spectral resolution of 2.8?nm) and spatial resolution (30?μm?×?10?μm) for cancer diagnosis. The ERL-MHSI system has transmittance and fluorescence mode. The transmittance can provide the morphological information for pathological diagnosis, and the fluorescence of cells or tissue can provide the characteristic signature for identification of normal and abnormal. In this work, the development of the ERL-MHSI system is discussed and the capability of the system is demonstrated by diagnosing early stage oral cancer of twenty mice in vitro. The best sensitivity for identifying normal cells and squamous cell carcinoma (SCC) was 100%. The best specificity for identifying normal cells and SCC was 99%. The best sensitivity for identifying normal cells and dysplasia was 99%. The best specificity for identifying normal cells and dysplasia was 97%. This work also utilizes fractal dimension to analyze the morphological information and find the significant different values between normal and SCC. 1. Introduction The hyperspectral image (HSI) is capable of simultaneously presenting spectral and spatial information with high resolution. The spectral information provides the characteristic of objects, and the spatial information provides the morphological information of objects. The combination allows for spectral analysis of each pixel on the acquired image and assists statistical image analysis of the acquired image. Therefore, the HSI has been widely applied to many areas, such as remote sensing, digital archives, biomedical inspection, and so on [1]. In the biomedical inspection, the HSI is a useful modality in diagnostic medicine including applications for retinal image [2, 3], skin diagnosis [4–7], tumor microvasculature change, and cancer diagnosis [8–10]. Biological tissues have optical characteristics reflecting the chemical characteristics to provide information with regard to the health or disease of tissue. Because the cancer is the high mortality and morbidity disease, the physician hopes to find the characteristic of cancer in the early stage. The most accurate way to diagnose cancer relies on pathologist to study biopsy under the optical microscopic image. Although the optical microscope provides the direct image of the biopsy and is the most important instrument to research pathological change of cancer cell, the optical microscope still has the limitations. The interaction between light and the object changes the

References

[1]  C. T. Willoughby, M. A. Folkman, and M. A. Figueroa, “Application of hyperspectral imaging spectrometer systems to industrial inspection,” in Three-Dimensional and Unconventional Imaging for Industrial Inspection and Metrology, vol. 2599 of Proceedings of SPIE, pp. 264–272, October 1995.
[2]  B. Khoobehi, J. M. Beach, and H. Kawano, “Hyperspectral imaging for measurement of oxygen saturation in the optic nerve head,” Investigative Ophthalmology and Visual Science, vol. 45, no. 5, pp. 1464–1472, 2004.
[3]  W. R. Johnson, D. W. Wilson, W. Fink, M. Humayun, and G. Bearman, “Snapshot hyperspectral imaging in ophthalmology,” Journal of Biomedical Optics, vol. 12, no. 1, Article ID 014036, 2007.
[4]  B. Farina, C. Bartoli, A. Bono et al., “Multispectral imaging approach in the diagnosis of cutaneous melanoma: potentiality and limits,” Physics in Medicine and Biology, vol. 45, no. 5, pp. 1243–1254, 2000.
[5]  L. L. Randeberg, I. Baarstad, T. L?ke, P. Kaspersen, and L. O. Svaasand, “Hyperspectral imaging of bruised skin,” in Photonic Therapeutics and Diagnostics II, vol. 6078 of Proceedings of SPIE, p. 60780O, January 2006.
[6]  G. N. Stamatas and N. Kollias, “In vivo documentation of cutaneous inflammation using spectral imaging,” Journal of Biomedical Optics, vol. 12, no. 5, Article ID 051603, 2007.
[7]  A. Vogel, V. V. Chernomordik, J. D. Riley et al., “Using noninvasive multispectral imaging to quantitatively assess tissue vasculature,” Journal of Biomedical Optics, vol. 12, no. 5, Article ID 051604, 2007.
[8]  D. G. Ferris, R. A. Lawhead, E. D. Dickman et al., “Multimodal hyperspectral imaging for the noninvasive diagnosis of cervical neoplasia,” Journal of Lower Genital Tract Disease, vol. 5, no. 2, pp. 65–72, 2001.
[9]  M. E. Martin, M. B. Wabuyele, K. Chen et al., “Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection,” Annals of Biomedical Engineering, vol. 34, no. 6, pp. 1061–1068, 2006.
[10]  B. S. Sorg, M. E. Hardee, N. Agarwal, B. J. Moeller, and M. W. Dewhirst, “Spectral imaging facilitates visualization and measurements of unstable and abnormal microvascular oxygen transport in tumors,” Journal of Biomedical Optics, vol. 13, no. 1, Article ID 014026, 2008.
[11]  R. Schultz, T. Nielsen, J. Zavaleta, R. Ruch, R. Wyatt, and H. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry, vol. 43, no. 4, pp. 239–247, 2001.
[12]  K. Onizawa, H. Saginoya, Y. Furuya, and H. Yoshida, “Fluorescence photography as a diagnostic method for oral cancer,” Cancer Letters, vol. 108, no. 1, pp. 61–66, 1996.
[13]  G. J. Tearney, R. H. Webb, and B. E. Bouma, “Spectrally encoded confocal microscopy,” Optics Letters, vol. 23, no. 15, pp. 1152–1154, 1998.
[14]  S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Optics Express, vol. 11, no. 22, pp. 2953–2963, 2003.
[15]  D. Yelin, C. Boudoux, B. E. Bouma, and G. J. Tearney, “Large area confocal microscopy,” Optics Letters, vol. 32, no. 9, pp. 1102–1104, 2007.
[16]  A. M. Siddiqi, H. Li, F. Faruque et al., “Use of hyperspectral imaging to distinguish normal, precancerous, and cancerous cells,” Cancer Cytopathology, vol. 114, no. 1, pp. 13–21, 2008.
[17]  M. E. Martin, M. B. Wabuyele, M. Panjehpour, M. N. Phan, B. F. Overholt, and T. V. Dinh, “Hyperspectral fluorescence imaging system for biomedical diagnostics,” in Advanced Biomedical and Clinical Diagnostic Systems IV, vol. 6080 of Proceedings of SPIE, p. 60800Q, January 2006.
[18]  H. Akbari, K. Uto, Y. Kosugi, K. Kojima, and N. Tanaka, “Cancer detection using infrared hyperspectral imaging,” Cancer Science, vol. 102, no. 4, pp. 852–857, 2011.
[19]  K. Masood, N. Rajpoot, K. Rajpoot, and H. Qureshi, “Hyperspectral colon tissue classification using morphological analysis,” in Proceedings of the 2nd Annual International Conference on Emerging Techonologies (ICET '06), pp. 735–741, Peshawar, Pakistan, November 2006.
[20]  Y. F. Hsieh, M. Ou-Yang, and C. C. Lee, “Finite conjugate embedded relay lens hyperspectral imaging system,” Applied Optics, vol. 50, no. 33, pp. 6198–66205, 2011.
[21]  American Cancer Society, Cancer facts & figures 2012, http://www.cancer.org/acs/groups/content/@epidemiologysurveilance/documents/document/acspc-031941.pdf.
[22]  N. W. Chang, R. J. Pei, H. C. Tseng et al., “Co-treating with arecoline and 4-nitroquinoline 1-oxide to establish a mouse model mimicking oral tumorigenesis,” Chemico-Biological Interactions, vol. 183, no. 1, pp. 231–237, 2010.
[23]  F. Kenneth, Fractal Geometry, John Wiley & Sons, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133