Hasselmann K.On the non-linear transfer in a gravity wave spectrum.Journal of Fluid Mechnics, Part 1, Genearl theory, 1962, 12:481-500.
[4]
Hasselmann K.On the non-linear transfer in a gravity wave spectrum.Journal of Fluid Mechnics, Part 2, Conservation theory, wave-particle correspondence, irreversibility, 1963a, 15:273-281.
[5]
The SWAN team.SWAN Technical documentation.Delft University of Technology, 2007.
[6]
Ou SH, Liau JM, Hsu TW et al.Simulating typhoon waves by SWAN wave model in coastal waters of Taiwan.Ocean En-gineering, 2002, 29:947-971.
Hasselmann K.On the non-linear transfer in a gravity wave spectrum.Journal of Fluid Mechnics, Part 3, Evaluation of energy flux and sea-swell interactions for a Neuman spectrum, 1963b, 15:385-398.
[12]
Hasselmann S, Hasselmann K, Allender JH et al.Computations and parameterizations of the linear energy transfer in a gravity wave spectrum, Ⅱ, Parameterizations of the nonlinear transfer for application in wave models.Journal of Physical Oceanography, 1985, 15:1378-1391.
[13]
李一平, 逢勇, 刘兴平等.太湖波浪数值模拟.湖泊科学, 2008, 20(1):117-122.
[14]
Booij N, Ris RC, Holthuijsen LH.A third-generation wave model for coastal regions 1:model description and validation.Journal of Geophysical Research, 1999, 104(C4):7649-7666.
[15]
Ris RC, Holthuijsen LH, Booij N.A third-generation wave model for coastal regions 2:verification.Journal of Geophysi-cal Research, 1999, 104(C4):7667-7681.
[16]
Lin WQ, Sanford LP, Suttles SE.Wave measurement and modeling in Chesapeake Bay.Continental Shelf Research, 2002, 22:2673-2686.