全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
湖泊科学  2011 

湖泊光学研究进展及其展望

DOI: 10.18307/2011.0401

Keywords: 湖泊光学,固有光学特性,表观光学特性,有色可溶性有机物,初级生产力

Full-Text   Cite this paper   Add to My Lib

Abstract:

从湖泊光学研究理论框架、研究方法、水体生物光学特性、有色可溶性有机物(CDOM)生物地球化学循环、光与浮游植物相互关系、沉积物再悬浮光学效应、湖泊水色遥感等几个方面全面回顾了湖泊光学研究进展.湖泊光学研究理论框架主要包括各光学组份吸收、散射、漫射衰减及辐射传输方程;近年来,逐步发展了野外时空格局调查、水动力水华过程连续观测、生物光学参数高频自动监测、室内模拟控制实验等相结合的一系列研究方法;水体生物光学特性方面,开展了大量不同类型湖泊水体颗粒物吸收、散射、后向散射、漫射衰减、真光层深度的野外测定,获得了固有、表观光学特性之间相互关系以及与光学组份浓度之间定量关系;CDOM生物地球化学循环方面,利用CDOM光谱吸收、三维荧光技术定量表征了CDOM空间分布、来源、组成差异、消除途径及对紫外辐射衰减影响程度;光与浮游植物相互关系方面,获得UV-B辐射对浮游植物生长影响,发展了浮游植物初级生产力计算的垂向归纳模型;沉积物再悬浮光学效应方面,发现沉积物再悬浮显著影响光场结构,降低透明度和真光层深度进而降低湖泊初级生产力;湖泊水色遥感方面,建立了湖泊水质参数悬浮物、叶绿素a浓度及浮游植物、CDOM吸收系数等遥感反演算法,并应用到卫星影像对富营养化湖泊蓝藻水华开展遥感监测.最后,基于以上几个方面湖泊光学的研究现状,从微观和宏观不同层面就湖泊光学研究进一步发展做出了展望。

References

[1]  Kirk JTO.Light and photosynthesis in aquatic ecosystem.Cambridge:Cambridge University Press, 1994.
[2]  张运林.大型浅水湖泊水体生物-光学特性及其生态环境意义[学位论文].南京:中国科学院地理与湖泊研究所, 2005.
[3]  张运林, 秦伯强, 杨龙元.太湖梅梁湾悬浮颗粒物和CDOM的吸收特性.生态学报, 2006, 26(12):3969-3979.
[4]  Zhang YL, Zhang B, Wang X et al.A study of absorption characteristics of chromophoric dissolved organic matter and par-ticles in Lake Taihu, China.Hydrobiologia, 2007, 592(1):105-120.
[5]  Tassan S, Ferrari GM.A sensitivity analysis of the\'transmittance-reflectance\'method for measuring light absorption by aquatic particles.Journal of Plankton Research, 2002, 24(8):757-774.
[6]  Wo?niak SB, Stramski D, Stramska M et al.Optical variability of seawater in relation to particle concentration, composi-tion, and size distribution in the nearshore marine environment at Imperial Beach, California.Journal of Geophysical Research, 2010, 115, C08027(doi:10.1029/2009JC005554).
[7]  Zhang YL, Liu ML, Qin BQ et al.Photochemical degradation of chromophoric dissolved organic matter exposed to simula-ted UV-B and natural solar radiation.Hydrobiologia, 2009, 627(1):159-168.
[8]  Loiselle SA, Bracchini L, Cózar A et al.Variability in photobleaching yields and their related impacts on optical conditions in subtropical lakes.Journal of Photochemistry and Photobiology B:Biology, 2009, 95(2):129-137.
[9]  谢纯刚, 张运林, 朱广伟等.人工模拟UV-B辐射对铜绿微囊藻生长的影响研究.湖泊科学, 2011, 23(2):223-229.
[10]  Jiang DG, Huang QH, Li JH.Spectral characteristics variations of chromophoric dissolved organic matter during growth of filamentous green macroalgae.Spectroscopy and Spectral Analysis, 2010, 30(7):1880-1885.
[11]  Ma RH, Tang JW, Dai JF et al.Absorption and scattering properties of water body in Taihu Lake, China:absorption.In-ternational Journal of Remote Sensing, 2006, 27(19):4277-4304.
[12]  Binding CE, Jerome JH, Bukata RP et al.Spectral absorption properties of dissolved and particulate matter in Lake Erie.Remote Sensing of Environment, 2008, 112(4):1702-1711.
[13]  Campbell G, Phinn SR, Daniel P.The specific inherent optical properties of three sub-tropical and tropical water reservoirs in Queensland, Australia.Hydrobiologia, 2011, 658(1):233-252.
[14]  Simis SGH, Tijdens M, Hoogveld HL et al.Optical signatures of the filamentous cyanobacterium Leptolyngbya boryana during mass viral lysis.Limnology and Oceanography, 2007, 52(1):184-197.
[15]  孙德勇, 李云梅, 乐成峰等.太湖水体散射特性及其与悬浮物浓度关系模型.环境科学, 2007, 28(12):2688-2694.
[16]  Ma RH, Pan DL, Duan HT et al.Absorption and scattering properties of water body in Taihu Lake, China:backscatter-ing.International Journal of Remote Sensing, 2009, 30(9):2321-2335.
[17]  Dekker AG, Vos RJ, Peters SWM.Analytical algorithms for lake water TSM estimation for retrospective analyses of TM and SPOT sensor data.International Journal of Remote Sensing, 2002, 23(1):15-35.
[18]  乐成峰, 李云梅, 查勇等.太湖水体漫射衰减系数的光学特性及其遥感反演模型.应用生态学报, 2009, 20(2):337-343.
[19]  Zhang YL, Yin Y, Zhang EL et al.Spectral attenuation of ultraviolet and visible radiation in lakes in the Yunnan Plateau, and the middle and lower reaches of the Yangtze River, China.Photochemical and Photobiological Sciences, 2011, 10(4):469-482.
[20]  Reinart A, Pedusaar T.Reconstruction of the time series of the underwater light climate in a shallow turbid lake.Aquatic Ecology, 2008, 42(1):5-15.
[21]  Whalen SC, Chalfant BB, Fischer EN et al.Comparative influence of resuspended glacial sediment on physicochemical characteristics and primary production in two arctic lakes.Aquatic Sciences, 2006, 68(1):65-77.
[22]  Torremorell A, Llames ME, Perez GL et al.Annual patterns of phytoplankton density and primary production in a large, shallow lake:the central role of light.Freshwater Biology, 2009, 54(3):437-449.
[23]  Gulati RD, Van Donk E.Lakes in the Netherlands, their origin, eutrophication and restoration:state-of-the-art review.Hydrobiologia, 2002, 478(1-3):73-106.
[24]  Havens KE.Submerged aquatic vegetation correlations with depth and light attenuating materials in a shallow subtropical lake.Hydrobiologia, 2003, 493(1-3):173-186.
[25]  段洪涛, 张柏, 宋开山等.查干湖叶绿素a浓度高光谱定量模型研究.环境科学, 2006, 27(3):503-507.
[26]  Le CF, Li YM, Zha Y et al.A four-band semi-analytical model for estimating chlorophyll a in highly turbid lakes:The case of Taihu Lake, China.Remote Sensing of Environment, 2009, 113(6):1175-1182.
[27]  Xu JP, Li F, Zhang B et al.Estimation of chlorophyll-a concentration using field spectral data:a case study in inland Case-Ⅱ waters, North China.Environmental Monitoring and Assessment, 2009, 158(1-4):105-116.
[28]  Kutser T, Pierson DC, Kallio KY et al.Mapping lake CDOM by satellite remote sensing.Remote Sensing of Environment, 2005, 94(4):535-540.
[29]  Zhang B, Li JS, Shen Q et al.A bio-optical model based method of estimating total suspended matter of Lake Taihu from near-infrared remote sensing reflectance.Environmental Monitoring and Assessment, 2008, 145(1-3):339-347.
[30]  冯龙庆, 时志强, 潘剑君等.太湖冬季有色可溶性有机物吸收荧光特性及遥感算法.湖泊科学, 2011, 23(3):348-356.
[31]  Hayakawa K, Sugiyama Y.Spatial and seasonal variations in attenuation of solar ultraviolet radiation in Lake Biwa, Japan.Journal of Photochemistry and Photobiology B:Biology, 2008, 90(2):121-133.
[32]  Qualls RG, Richardson CJ.Factors controlling concentration, export, and decomposition of dissolved organic nutrients in the Everglades of Florida.Biogeochemistry, 2003, 62(2):197-229.
[33]  Biers EJ, Zepp RG, Moran MA.The role of nitrogen in chromophoric and fluorescent dissolved organic matter formation.Marine Chemistry, 2007, 103(1-2):46-60.
[34]  Tranvik LJ, Downing JA, Cotner JB et al.Lakes and reservoirs as regulators of carbon cycling and climate.Limnology and Oceanography, 2009, 54(6):2298-2314.
[35]  Stedmon CA, Markager S, Kaas H.Optical properties and signatures of chromophoric dissolved organic matter (CDOM) in Danish coastal waters.Estuarine, Coastal and Shelf Science, 2000, 51(2):267-278.
[36]  Twardowski MS, Boss E, Sullivan JM et al.Modeling the spectral shape of absorption by chromophoric dissolved organic matter.Marine Chemistry, 2004, 89(1-4):69-88.
[37]  刘明亮, 张运林, 王鑫等.太湖有色可溶性有机物4种光谱模型的对比.生态与农村环境学报, 2009, 25(1):42-46.
[38]  姜广甲, 刘殿伟, 宋开山等.有色溶解有机物吸收光谱模型对比.湖泊科学, 2010, 22(3):383-390.
[39]  王志刚, 刘文清, 李宏斌等.三维荧光光谱法分析巢湖CDOM的空间分布及其来源.环境科学学报, 2006, 26(2):275-279.
[40]  Zhang YL, Van Dijk MA, Liu ML et al.The contribution of phytoplankton degradation to chromophoric dissolved organic matter (CDOM) in eutrophic shallow lakes:field and experimental evidence.Water Research, 2009, 43(18):4685-4697.
[41]  Zhang YL, Zhang EL, Yin Y et al.Characteristics and sources of chromophoric dissolved organic matter in lakes of the Yungui Plateau, China, differing in trophic state and altitude.Limnology and Oceanography, 2010, 55(6):2645-2659.
[42]  黄昌春, 李云梅, 王桥等.基于三维荧光和平行因子分析法的太湖水体CDOM组分光学特征.湖泊科学, 2010, 22(3):375-382.
[43]  Wang ZG, Liu WQ, Zhao NJ et al.Composition analysis of colored dissolved organic matter in Taihu Lake based on three dimension excitation-emission fluorescence matrix and PARAFAC model, and the potential application in water quality mo-nitoring.Journal of Environmental Sciences, 2007, 19(7):787-791.
[44]  Borisover M, Laor Y, Parparov A et al.Spatial and seasonal patterns of fluorescent organic matter in Lake Kinneret (Sea of Galilee) and its catchment basin.Water Research, 2009, 43(12):3104-3116.
[45]  Miller MP, McKnight DM.Comparison of seasonal changes in fluorescent dissolved organic matter among aquatic lake and stream sites in the Green Lakes Valley.Journal of Geophysical Research, 2010, 115(G00F12, doi:10.1029/2009JG000985).
[46]  Zhang YL, Qin BQ, Zhu GW et al.Chromophoric dissolved organic matter (CDOM) absorption characteristics with rela-tion to fluorescence in Lake Taihu, a large shallow subtropical lake.Hydrobiologia, 2007, 581(1):43-52.
[47]  Kieber RJ, Whitehead RF, Willey JD et al.Chromophoric dissolved organic matter (CDOM) in rainwater collected in southeastern North Carolina, USA.Journal of Atmospheric Chemistry, 2006, 54(1):21-41.
[48]  Hua B, Veum K, Yang J et al.Parallel factor analysis of fluorescence EEM spectra to identify THM precursors in lake waters.Environmental Monitoring and Assessment, 2010, 161(1-4):71-81.
[49]  Burdige DJ, Kline SW, Chen WH.Fluorescent dissolved organic matter in marine sediment pore waters.Marine Chemis-try, 2004, 89(1-4):289-311.
[50]  Pérez AP, Diaz MM, Ferraro MA et al.Replicated mesocosm study on the role of natural ultraviolet radiation in high CDOM, shallow lakes.Photochemical and Photobiological Sciences, 2003, 2(2):118-123.
[51]  Wu FC, Mills RB, Cai YR et al.Photodegradation-induced changes in dissolved organic matter in acidic waters.Canadi-an Journal of Fisheries and Aquatic Sciences, 2005, 62(5):1019-1027.
[52]  H?der DP, Helbling EW, Williamson CE et al.Effects of UV radiation on aquatic ecosystems and interactions with cli-mate change.Photochemical and Photobiological Sciences, 2011, 10(2):242-260.
[53]  H?der DP, Sinha RP.Solar ultraviolet radiation-induced DNA damage in aquatic organisms:potential environmental im-pact.Mutation Research, 2005, 571(1-2):221-233.
[54]  Bouchard JN, Campbell DA, Roy S.Effects of UV-B radiation on the D1 protein repair cycle of natural phytoplankton communities from three latitudes (Canada, Brazil, and Argentina).Journal of Phycology, 2005, 41(2):273-286.
[55]  Lesser MP.Effects of ultraviolet radiation on productivity and nitrogen fixation in the Cyanobacterium, Anabaen sp.(Newton\'s strain).Hydrobiologia, 2008, 598(1):1-9.
[56]  Heraud P, Roberts S, Shelly K et al.Interactions between UV-B exposure and phosphorus nutrition.II.Effects on rates of damage and repair.Journal of Phycology, 2005, 41(6):1212-1218.
[57]  Delgado-Molina JA, Carrillo P, Medina-Sánchez JM et al.Interactive effects of phosphorus loads and ambient ultraviolet radiation on the algal community in a high-mountain lake.Journal of Plankton Research, 2009, 31(6):619-634.
[58]  张运林, 秦伯强, 陈伟民等.太湖梅梁湾春季浮游植物初级生产力.湖泊科学, 2005, 17(1):81-86.
[59]  Yacobi YZ.Temporal and vertical variation of chlorophyll alpha concentration, phytoplankton photosynthetic activity and light attenuation in Lake Kinneret:possibilities and limitations for simulation by remote sensing.Journal of Plankton Re-search, 2006, 28(8):725-736.
[60]  Kameda T, Ishizaka J.Size-fractionated primary production estimated by a two-phytoplankton community model applicable to ocean color remote sensing.Journal of Oceanography, 2005, 61(4):663-672.
[61]  张运林, 冯胜, 马荣华等.太湖秋季真光层深度空间分布及浮游植物初级生产力的估算.湖泊科学, 2008, 20(3):380-388.
[62]  Paavel B, Arst H, Reinart A.Variability of bio-optical parameters in two North-European large lakes.Hydrobiologia, 2008, 599(1):201-211.
[63]  Pérez GL, Torremorell A, Bustingorry J et al.Optical characteristics of shallow lakes from the Pampa and Patagonia re-gions of Argentina.Limnologica, 2010, 40(1):30-39.
[64]  Hofmann H, Lorke A, Peeters F.The relative importance of wind and ship waves in the littoral zone of a large lake.Lim-nology and Oceanography, 2008, 53(1):368-380.
[65]  Erm A, Alari V, Listak M.Monitoring wave-induced sediment resuspension.Estonian Journal of Engineering, 2009, 15(3):196-211.
[66]  Phlips EJ, Aldridge FJ, Schelske CL et al.Relationships between light availability, chlorophyll a, and tripton in a large, shallow subtropical lake.Limnology and Oceanography, 1995, 40(2):416-421.
[67]  Huang PS, Han BP, Liu ZW.Floating-leaved macrophyte (Trapa quadrispinosa Roxb) beds have significant effects on sediment resuspension in Lake Taihu, China.Hydrobiologia, 2007, 581(1):189-193.
[68]  Li EH, Li W, Liu GH et al.The effect of different submerged macrophyte species and biomass on sediment resuspension in a shallow freshwater lake.Aquatic Botany, 2008, 88(2):121-126.
[69]  Siegel DA, Maritorena S, Nelson NB et al.Global distribution and dynamics of colored dissolved and detrital organic mate-rials.Journal of Geophysical Research, 2002, 107(C12), 3228(doi:10.1029/2001JC000965).
[70]  Spinrad RW, Carder KL, Perry MJ ed.Ocean Optics.New York:Oxford University Press, 1994.
[71]  Tassan S.Local algorithms using SeaWiFS data for the retrieval of phytoplankton, pigments, suspended sediment, and yellow substance in coastal waters.Applied Optics, 1994, 33(24):2369-2378.
[72]  唐军武, 田国良, 汪小勇等.水体光谱测量与分析Ⅰ:水面以上测量法.遥感学报, 2004, 8(1):37-44.
[73]  Saraceno JF, Pellerin BA, Downing BD et al.High-frequency in situ optical measurements during a storm event:Assessing relationships between dissolved organic matter, sediment concentrations, and hydrologic processes.Journal of Geophysical Research, 2009, 114, G00F09(doi:10.1029/2009JG000989).
[74]  Chen ZQ, Hu ZM, Muller-Karger FE et al.Short-term variability of suspended sediment and phytoplankton in Tampa Bay, Florida:Observations from a coastal oceanographic tower and ocean color satellites.Estuarine, Coastal and Shelf Science, 2010, 89(1):62-72.
[75]  Hunter PD, Tyler AN, Presing M et al.Spectral discrimination of phytoplankton colour groups:The effect of suspended particulate matter and sensor spectral resolution.Remote Sensing of Environment, 2008, 112(4):1527-1544.
[76]  赵巧华, 秦伯强.藻类的光谱吸收特征及其混合藻吸收系数的分离.环境科学学报, 2008, 28(2):313-318.
[77]  张俊, 李爱民, 王学军.混合藻类高光谱特征及其叶绿素a分离定量模型.湖泊科学, 2010, 22(3):349-356.
[78]  Rhode SC, Pawlowski M, Tollrian R.The impact of ultraviolet radiation on the vertical distribution of zooplankton of the genus Daphnia.Nature, 2001, 412(1):69-72.
[79]  Fischer JM, Nicolai JL, Williamson CE et al.Effects of ultraviolet radiation on diel vertical migration of crustacean zoo-plankton:An in situ mesocosm experiment.Hydrobiologia, 2006, 563(1):217-224.
[80]  更多...
[81]  Henderson RK, Baker A, Parsons SA et al.Characterisation of algogenic organic matter extracted from cyanobacteria, green algae and diatoms.Water Research, 2008, 42(13):3435-3445.
[82]  张运林, 秦伯强, 陈伟民等.悬浮物浓度对水下光照和初级生产力的影响.水科学进展, 2004, 15(5):615-620.
[83]  张运林, 秦伯强, 朱广伟等.长江中下游浅水湖泊沉积物再悬浮对水下光场的影响研究——以龙感湖和太湖为例.中国科学(D辑), 2005, 35(增刊Ⅱ):101-110.
[84]  赵巧华, 张运林, 秦伯强.太湖梅梁湾水体悬浮颗粒物吸收系数的分离.湖泊科学, 2006, 18(4):356-362.
[85]  Arst H, Erm A, Herlevi A et al.Optical properties of boreal lake waters in Finland and Estonia.Boreal Environment Re-search, 2008, 13(2):133-158.
[86]  乐成峰, 李云梅, 查勇等.太湖梅梁湾水体组分吸收特性季节差异分析.环境科学, 2008, 29(9):2448-2455.
[87]  Zhang YL, Liu ML, Van Dijk MA et al.Measured and numerically partitioned phytoplankton spectral absorption coefficient in inland waters.Journal of Plankton Research, 2009, 31(3):311-323.
[88]  Giardino C, Brando VE, Dekker AG et al.Assessment of water quality in Lake Garda (Italy) using Hyperion.Remote Sensing of Environment, 2007, 109(2):183-195.
[89]  Gallegos CL, Davies-Colley RJ, Gall M.Optical closure in lakes with contrasting extremes of reflectance.Limnology and Oceanography, 2008, 53(5):2021-2034.
[90]  孙德勇, 李云梅, 王桥等.太湖水体散射特性及其空间分异.湖泊科学, 2008, 20(3):389-395.
[91]  Whitlock CH, Pool LR, Usry JW et al.Comparison of reflectance with backscatter and absorption parameters for turbid wa-ters.Applied Optics, 1981, 20(3):517-522.
[92]  宋庆君, 唐军武.黄海、东海海区水体散射特性研究.海洋学报, 2006, 28(4):56-63.
[93]  Belzile C, Vincent WF, Howard-Williams C et al.Relationships between spectral optical properties and optically active substances in a clear oligotrophic lake.Water Resources Research, 2004, 40, W12512(doi:10.1029/2004WR003090).
[94]  Zhang YL, Zhang B, Ma RH et al.Optically active substances and their contributions to the underwater light climate in Lake Taihu, a large shallow lake in China.Fundamental and Applied Limnology, 2007, 170(1):11-19.
[95]  Horion S, Bergamino N, Stenuite S et al.Optimized extraction of daily bio-optical time series derived from MODIS/Aqua imagery for Lake Tanganyika, Africa.Remote Sensing of Environment, 2010, 114(4):781-791.
[96]  Harding WR.Phytoplankton primary production in a shallow, well-mixed, hypertrophic South African lake.Hydrobiologia, 1997, 344(1-3):87-102.
[97]  张运林, 秦伯强, 胡维平等.太湖典型湖区真光层深度时空变化及其生态意义.中国科学(D辑), 2006, 36(3):287-296.
[98]  Oliver RL, Whittington J, Lorenz Z et al.The influence of vertical mixing on the photoinhibition of variable chlorophyll a fluorescence and its inclusion in a model of phytoplankton photosynthesis.Journal of Plankton Research, 2003, 25(9):1107-1129.
[99]  马荣华, 戴锦芳.应用实测光谱估测太湖梅梁湾附近水体叶绿素浓度.遥感学报, 2005, 9(1):78-86.
[100]  Gitelson AA, Dall\'Olmo G, Moses W et al.A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters:Validation.Remote Sensing of Environment, 2008, 112(9):3582-3593.
[101]  李云亮, 张运林, 李俊生等.不同方法估算太湖叶绿素a浓度对比研究.环境科学, 2009, 30(3):680-686.
[102]  Zhang YL, Liu ML, Qin BQ et al.Modeling remote-sensing reflectance and retrieving chlorophyll-a concentration in ex-tremely turbid Case-2 waters (Lake Taihu, China).IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(7):1937-1948.
[103]  Zhang YL, Feng LQ, Li JS et al.Seasonal-spatial variation and remote sensing of phytoplankton absorption in Lake Taihu, a large eutrophic and shallow lake in China.Journal of Plankton Research, 2010, 32(7):1023-1037.
[104]  Simis SGH, Peters SWM, Gons HJ.Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water.Limnology and Oceanography, 2005, 50(1):237-245.
[105]  Hunter PD, Tyler AN, Carvalho L et al.Hyperspectral remote sensing of cyanobacterial pigments as indicators for cell pop-ulations and toxins in eutrophic lakes.Remote Sensing of Environment, 2010, 114(11):2705-2718.
[106]  Duan HT, Ma RH, Zhang YZ et al.A new three-band algorithm for estimating chlorophyll concentrations in turbid inland lakes.Environmental Research Letters, 2010(doi:10.1088/1748-9326/5/4/044009).
[107]  Laurion I, Ventura M, Catalan J et al.Attenuation of ultraviolet radiation in mountain lakes:Factors controlling the a-mong-and within-lake variability.Limnology and Oceanography, 2000, 45(6):1274-1288.
[108]  Huovinen PS, Penttil H, Soimasuo MR.Spectral attenuation of solar ultraviolet radiation in humic lakes in Central Fin-land.Chemosphere, 2003, 51(3):205-214.
[109]  吴丰昌, 王立英, 黎文等.天然有机质及其在地表环境中的重要性.湖泊科学, 2008, 20(1):1-12.
[110]  Bracchini L, Dattilo AM, Hull V et al.Spatial and seasonal changes in optical properties of autochthonous and allochtho-nous chromophoric dissolved organic matter in a stratified mountain lake.Photochemical and Photobiological Sciences, 2010, 9(3):304-314.
[111]  Blough NV, Del Vecchio R.Chromophoric DOM in the coastal environment.In:Hansell DA, Carlson CA, eds.Biogeo-chemistry of marine dissolved organic matter.San Diego:Academic Press, 2002:509-540.
[112]  Zhang YL, Qin BQ.Variations in spectral slope in Lake Taihu, a large subtropical shallow lake in China.Journal of Great Lake Research, 2007, 33(2):483-496.
[113]  刘明亮, 张运林, 秦伯强.太湖入湖河口和开敞区CDOM吸收和三维荧光特征.湖泊科学, 2009, 21(2):234-241.
[114]  Yao X, Zhang YL, Zhu GW et al.Resolving the variability of CDOM fluorescence to differentiate the sources and fate of DOM in Lake Taihu and its tributaries.Chemosphere, 2011, 82(1):145-155.
[115]  Fellman JB, Hood E, Spencer RGM.Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems:A review.Limnology and Oceanography, 2010, 55(6):2452-2462.
[116]  Morris DP, Zagarese HE, Williamson CE et al.The attenuation of solar UV radiation in lakes and the role of dissolved or-ganic carbon.Limnology and Oceanography, 1995, 40(8):1381-1391.
[117]  Belmont P, Morris DP, Pazzaglia FJ et al.Penetration of ultraviolet radiation in streams of eastern Pennsylvania:Topo-graphic controls and the role of suspended particulates.Aquatic Science, 2009, 71(2):189-201.
[118]  Smith REH, Furgal JA, Charlton MN et al.Attenuation of ultraviolet radiation in a large lake with low dissolved organic matter concentrations.Canadian Journal of Fisheries and Aquatic Sciences, 1999, 56(9):1351-1361.
[119]  De Lange HJ.The attenuation of ultraviolet and visible radiation in Dutch inland waters.Aquatic Ecology, 2000, 34(3):215-226.
[120]  Vincent WF, Kumagai M, Belzile C et al.Effects of seston on ultraviolet attenuation in Lake Biwa.Limnology, 2001, 2(3):179-184.
[121]  Anesio AM, Granéli W.Increased photoreactivity of DOC by acidification:Implications for the carbon cycle in humic lakes.Limnology and Oceanography, 2003, 48(2):735-744.
[122]  Vione D, Lauri V, Minero C et al.Photostability and photolability of dissolved organic matter upon irradiation of natural water samples under simulated sunlight.Aquatic Sciences, 2009, 71(1):34-45.
[123]  Shank GC, Whitehead RF, Smith ML et al.Photodegradation of strong copper-complexing ligands in organic-rich estuar-ine waters.Limnology and Oceanography, 2006, 51(2):884-892.
[124]  Tian JY, Yu J.Changes in ultrastructure and responses of antioxidant systems of algae (Dunaliella salina) during accli-mation to enhanced ultraviolet-B radiation.Journal of Photochemistry and Photobiology B:Biology, 2009, 97(3):152-160.
[125]  Modenutti B, Balseiro E, Callieri C et al.Increase in photosynthetic efficiency as a strategy of planktonic organisms ex-ploiting deep lake layers.Freshwater Biology, 2004, 49(2):160-169.
[126]  Doyle SA, Saros JE, Williamson CE.Interactive effects of temperature and nutrient limitation on the response of alpine phytoplankton growth to ultraviolet radiation.Limnology and Oceanography, 2005, 50(5):1362-1367.
[127]  Xenopoulos MA, Frost PC, Elser JJ.Joint effects of UV radiation and phosphorus supply on algal growth rate and elemen-tal composition.Ecology, 2002, 83(2):423-435.
[128]  Carrillo P, Delgado-Molina JA, Medina-Sa\'nchez JM et al.Phosphorus inputs unmask negative effects of ultraviolet radia-tion on algae in a high mountain lake.Global Change Biology, 2008, 14(2):423-439.
[129]  Sommaruga R, Chen YW, Liu ZW.Multiple Strategies of Bloom-Forming Microcystis to Minimize Damage by Solar Ultra-violet Radiation in Surface Waters.Microbial Ecology, 2009, 57(4):667-674.
[130]  Medina CD, Tracanna BC, Hilal M et al.Effect of solar UV-B exclusion on the phytoplankton community in a sub-tropi-cal mountain reservoir:a mesocosm study.Lakes and Reservoirs:Research and Management, 2010, 15(3):237-253.
[131]  Stenuite S, Pirlot S, Hardy MA et al.Phytoplankton production and growth rate in Lake Tanganyika:Evidence of a de-cline in primary productivity in recent decades.Freshwater Biology, 2007, 52(11):2226-2239.
[132]  Sterner RW.In situ measured primary production in Lake Superior.Journal of Great Lakes Research, 2010, 36(1):139-149.
[133]  Arst H, N?ges T, N?ges P et al.Relations of phytoplankton in situ primary production, chlorophyll concentration and un-derwater irradiance in turbid lakes.Hydrobiologia, 2008, 599(1):169-176.
[134]  Behrenfeld MJ, Falkowski PG.A consumer\'s guide to phytoplankton primary productivity models.Limnology and Ocea-nography, 1997, 42(7):1479-1491.
[135]  Behrenfeld MJ, Falkowski PG.Photosynthetic rates derived from satellite-based chlorophyll concentration.Limnology and Oceanography, 1997, 42(1):1-20.
[136]  Morin A, Lamoureux W, Busnarda J.Empirical models predicting primary productivity from chlorophyll a and water tem-perature for stream periphyton and lake and ocean phytoplankton.Journal of the North American Benthological Society, 1999, 18(3):299-307.
[137]  Bergamino N, Horion S, Stenuite S et al.Spatio-temporal dynamics of phytoplankton and primary production in Lake Tan-ganyika using a MODIS based bio-optical time series.Remote Sensing of Environment, 2010, 114(4):772-780.
[138]  Hyde KJW, O\'Reilly JE, Oviatt CA.Evaluation and application of satellite primary production models in Massachusetts Bay.Continental Shelf Research, 2008, 28(10-11):1340-1351.
[139]  Saba VS, Friedrichs MAM, Carr ME et al.Challenges of modeling depth-integrated marine primary productivity over mul-tiple decades:A case study at BATS and HOT.Global Biogeochemical Cycles, 2010, 24, GB3020(doi:10.1029/2009GB003655).
[140]  Bode A, Varela M.Mesoscale estimations of primary production in shelf waters:a case study in the Golfo Artabro (NW Spain).Journal of Experimental Marine Biology and Ecology, 1998, 229(1):111-131.
[141]  Holm-Hansena O, Naganobub M, Kawaguchib S et al.Factors influencing the distribution, biomass, and productivity of phytoplankton in the Scotia Sea and adjoining waters.Deep-Sea Research Ⅱ, 2004, 51(12-13):1333-1350.
[142]  Zhang YL, Qin BQ, Liu ML.Temporal-spatial variations of chlorophyll a and primary production in Meiliang Bay, Lake Taihu, China from 1995 to 2003.Journal of Plankton Research, 2007, 29(8):707-719.
[143]  Tadonléké RD.Evidence of warming effects on phytoplankton productivity rates and their dependence on eutrophication status.Limnology and Oceanography, 2010, 55(3):973-982.
[144]  Lawson SE, Wiberg PL, McGlathery KJ et al.Wind driven sediment suspension controls light availability in a shallow coastal lagoon.Estuaries and Coasts, 2007, 30(1):102-112.
[145]  Schutten J, Dainty J, Davy AJ.Wave-induced Hydraulic Forces on Submerged Aquatic Plants in Shallow Lakes.Annals of Botany, 2004, 93(3):333-341.
[146]  马荣华, 唐军武, 段洪涛等.湖泊水色遥感研究进展.湖泊科学, 2009, 21(2):143-158.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133