全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
湖泊科学  2012 

淹水环境中芦苇幼苗对两种底质的生理响应及其恢复状况

DOI: 10.18307/2012.0409

Keywords: 淹水,芦苇,叶绿素荧光,恢复状况,巢湖,底质

Full-Text   Cite this paper   Add to My Lib

Abstract:

探讨湿地植物对淹水的响应及其恢复生长状况对于湖泊湿地的修复具有重要意义.以芦苇(Phragmitescommunis)为对象,研究其在湖泊沉积物(LS)和农田土壤(AS)两种底质上完全淹水一个月内每隔5d其叶片相对叶绿素含量(rChlc)、丙二醛含量(MDA)和叶绿素荧光特性的变化,并分别于淹水后的10、20和30d对其恢复状况进行研究.结果表明:缓苗期间生长于LS上芦苇的rChlc和叶绿素荧光特性均高于生长于AS上的,淹水后rChlc逐渐下降,20d后下降趋势更加明显,30d时LS和AS上芦苇叶片的rChlc分别下降了40.82%和39.49%,MDA则逐渐升高,且生长于AS上的要高于LS上的;叶绿素荧光参数Fv/Fm和Y也均逐渐下降,且总体上与rChlc的变化呈显著正相关;LS上芦苇叶片的快速光响应曲线(RLCs)在淹水后缓慢下降,至25d后下降明显,而AS上的则在15d后即显著下降.淹水胁迫解除后,两种底质上芦苇的rChlc和叶绿素荧光特性均逐渐升高,总体上AS上芦苇的增幅大于LS上的,但LS上的各指标仍大于AS上的,而MDA逐渐下降,同样AS上的降幅要大于LS上的;随着淹水时间的延长,芦苇恢复到正常生长状态的时间有所增加,淹水30d的芦苇叶片凋落并萌发出新叶和新的植株,同时LS上芦苇的恢复时间要短于AS上的.可见,淹水抑制了幼苗期芦苇的生长,且随着时间的延长其抑制程度逐渐加重;淹水时间短时芦苇能较快地恢复生长,淹水时间长时则需要长出新叶和萌发出新的植株来适应生长,同时营养状况良好的底质在增加芦苇耐淹性及加快其淹水后的恢复生长方面具有一定的积极意义.

References

[1]  王海洋,陈家宽,周进. 水位梯度对湿地植物生长、繁殖和生物量分配的影响. 植物生态学报,1999,23(3):269-274.
[2]  刘云峰,秦洪文,石雷等. 水淹对水芹叶片结构和光系统Ⅱ光抑制的影响. 植物学报,2010,45(4):426-434.
[3]  Brix H. Functions of macrophytes in constructed wetlands. Water Science and Technology,1994,29(4):71-78.
[4]  方云英,杨肖娥,常会庆等. 利用水生植物原位修复污染水体. 应用生态学报,2008, 19(2):407-412.
[5]  殷福才,张之源. 巢湖富营养化研究进展. 湖泊科学, 2003,15(4):377-384.
[6]  柏祥,陈开宁,黄蔚等. 黄菖蒲和美人蕉对水深梯度的响应差异. 生态学杂志, 2011,30(3):464-470.
[7]  Franklin P,Dunbar M,Whitehead P. Flow controls on lowland river macrophytes:A review. Science of the Total Environment, 2008,400:369-378.
[8]  范晓荣,沈其荣. ABA、IAA 对旱作水稻叶片气孔的调节作用. 中国农业科学,2003,36(2):1450-1455.
[9]  Pezeshki SR,Anderson PA. Responses of three bottom land woody species with different flood-tolerance capabilities to various flooding regimes. Wetland Ecology and Management,1997,4:245-256.
[10]  Mommer L,de Kroon H,Pierik R et al. A functional comparison of acclimation to shade and submergence in two terrestrial plant species. New Phytologist,2005,167:197-206.
[11]  陈鹭真,林鹏,王文卿. 红树植物淹水胁迫响应研究进展. 生态学报,2006,26(2):586-593.
[12]  卢妍. 湿地植物对淹水条件的响应机制. 自然灾害学报,2010, 19(4):147-151.
[13]  Jiang CD,Jiang GM,Wang XZ et al. Increased photosynthetic activities and thermostability of photosystem Ⅱ with leaf development of elm seedlings (Ulmus pumila) probed by the fast fluorescence rise OJIP. Environmental and Experimental Botany,2006,58(1/2/3):261-268.
[14]  赵昕,吴雨霞,赵敏桂等. NaCl 胁迫对盐芥和拟南芥光合作用的影响. 植物学通报,2007,24:154-160.
[15]  更多...
[16]  李洪燕,郑青松,刘兆普等. 海水胁迫对苦荬菜幼苗生长及生理特性的影响. 植物学报,2010,45(1):73-78.
[17]  韩博平,韩志国,付翔. 藻类光合作用机理与模型. 北京:科学出版社, 2003.
[18]  Crawford RMM,Braendle R. Oxygen deprivation stress in a changing environment. Journal of Experimental Botany,1996, 47(2):145-159.
[19]  van Eck WHJM,van de Steeg HM,Blom CWPM et al. Is tolerance to summer flooding correlated with distribution patterns in river floodplains? A comparative study of 20 terrestrial grassland species. OIKOS,2004,107:393-405.
[20]  徐治国,何岩,闫百兴等. 营养物及水位变化对湿地植物的影响. 生态学杂志,2006,25(1):87-92.
[21]  李文朝. 五里湖底质条件与水生高等植物的适应性研究. 湖泊科学, 1996,8(增刊):30-36.
[22]  谢平. 翻阅巢湖的历史——蓝藻、富营养化及地质演化. 北京:科学出版社,2009.
[23]  阎伍玖,王心源. 巢湖流域非点源污染初步研究. 地理科学,1998,18(3):263-267.
[24]  常福辰,陆长梅,沙莎. 植物生物学实验. 南京:南京师范大学出版社, 2007.
[25]  Sand-Jensen K. Environmental variables and their effect on photosynthesis of aquatic plant communities. Aquatic Botany, 1989,34(1/2/3):5-15.
[26]  Fernández MD. Changes in photosynthesis and fluorescence in response to flooding in emerged and submerged leaves of Pouteria orinocoensis. Photosynthetica,2006,44(1):32-38.
[27]  衣英华,樊大勇,谢宗强等. 模拟淹水对枫杨和栓皮栎气体交换、叶绿素荧光和水势的影响. 植物生态学报,2006, 30:960-968.
[28]  Havaux M,Florence T. Temperature-dependent adjustment of thermal stability of photosystem Ⅱ in vivo:possible involvement of xanthophylls-cycle pigments. Planta,1996,198:324-333.
[29]  Demmig B,Bj rkman O. Comparison of the effect of excessive light on chlorophyll fluorescence (77K) and photon yield of O2 evolution in leaves of higher plants. Planta,1987,171:171-184.
[30]  Li M,Yang D,Li W. Leaf gas exchange characteristics and chlorophyll fluorescence of three wetland plants in response to long-term soil flooding. Photosynthetica,2007,45(2):222-228.
[31]  Ella ES,Kawano N,Ito O. Importance of active oxygen-scavenging system in the recovery of rice seedlings after submergence. Plant Science,2003,165:85-93.
[32]  王海锋,曾波,李娅等. 长期完全水淹对4种三峡库区岸生植物存活及恢复生长的影响. 植物生态学报,2008, 32(5):977-984.
[33]  Rawyler A,Arpagaus S,Braendle R. Impact of oxygen stress and energy availability on membrane stability of plant cells. Annals of Botany,2002,90:499-507.
[34]  Vartapetian BB,Jackson MB. Plant adaptations to anaerobic stress. Annals of Botany,1997,79(Suppl. A):3-20.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133