全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
湖泊科学  2012 

沉水植物驱动的水环境钙泵与水体磷循环的关系

DOI: 10.18307/2012.0305

Keywords: 沉水植物,钙泵,CaCO3-P共沉淀,上覆水,沉积物,磷循环

Full-Text   Cite this paper   Add to My Lib

Abstract:

水体磷循环是水柱和对应的沉积物中发生的各种非生物和生物的磷迁移转化过程.与此同时,沉积物中钙通过沉水植物吸收和转运,从该类植物的叶面释放至水柱中,释放的Ca2+与水柱中的CO32-一起形成碳酸钙.在这一过程中,水柱中少量溶解性磷分配在碳酸钙中形成CaCO3-P共沉淀,导致水体中可溶性磷向难溶性磷转化,这种由沉水植物驱动的水环境钙泵在水体磷循环中发挥着重要作用.研究证明,沉水植物菹草叶面上有CaCO3-P共沉淀的形成,且这种共沉淀的含磷量变化范围很宽.另一方面,新近沉积物中钙与磷的沉淀物存在一个由聚磷酸盐向磷灰石逐渐演变过程,而沉水植物叶面上的含磷共沉淀作用是否也存在由聚磷酸盐向磷灰石的变质过程,该过程在沉水植物生长期间是否发生关系到沉水植物除磷效果值得深入研究.本文从水体磷循环概述、钙在水体磷循环中的作用和沉水植物驱动的水环境钙泵假说及其在水体磷循环中的意义等方面综述了钙在水环境中的迁移对水体磷循环的贡献.

References

[1]  Conley DJ,Paerl HW,Howarth RW et al. Controlling eutrophication:Nitrogen and phosphorus. Science,2009,323:1014-1015.
[2]  Srivastava J,Gupta A,Chandra H. Managing water quality with aquatic macrophytes. Rev Environ Sci Biotechnol,2008, 7:255-266.
[3]  Zhang JZ,Huang XL. Relative importance of solid-phase phosphorus and iron on the sorption behavior of sediments. Environ Sci Technol,2007,41:2789-2795.
[4]  Merico A,Tyrrell T,Wilson PA. Eocene/Oligocene ocean de-acidification linked to Antarctic glaciation by sea-level fall. Nature,2008,452:979-982.
[5]  Neal C,Jarvie HP,Williams RJ et al. Phosphorus-calcium carbonate saturation relationships in a lowland chalk river impacted by sewage inputs and phosphorus remediation:an assessment of phosphorus self-cleansing mechanisms in natural waters. Sci Total Environ,2002,282:295-310.
[6]  Danen-Louwerse HJ,Lijklema L,Coenraats M. Coprecipitation of phosphate with calcium carbonate in Lake Veluwe. Water Res,1995,29:1781-1785.
[7]  Song Y,Hahn HH,Hoffmann E. The effect of carbonate on the precipitation of calcium phosphate. Environ Technol, 2002,23:207-215.
[8]  McConnaughey TA,LaBaugh JW,Rosenberry DO et al. Carbon budget for a groundwater fed lake:calcification supports summer photosynthesis. Limnol Oceanogr,1994,39:1319-1332.
[9]  Diaz J,Ingall E,Benitez-Nelson C et al. Marine polyphosphate:A key player in geologic phosphorus sequestration. Science, 2008,320:652-655.
[10]  Sigman DM,Boyle EA. Glacial/interglacial variations in atmospheric carbon dioxide. Nature,2000,407:859-869.
[11]  Kintisch E. Should oceanographers pump iron? Science,2007,318:1368-1370.
[12]  Hepler PK. Calcium,a central regulator of plant growth and development. Plant Cell,2005,17:2142-2155.
[13]  Yang HQ,Jie YL. Uptake and transport of calcium in plants. J Plant Physiol Mol Biol,2005,31:227-234.
[14]  Olesen C,Picard M,Winther AL et al. The structural basis of calcium transport by the calcium pump. Nature,2007, 450:1036-1042.
[15]  Andersen JP,Jorgensen PL,Moller JV. Direct demonstration of structural changes in soluble,monomeric Ca2+-ATPase associated with Ca2+ release during the transport cycle. Proc Natl Acad Sci USA,1985,82:4573-4577.
[16]  Hirschi KD. Vacuolar H+/Ca2+ transport,who\'s directing the traffic? Trends Plant Sci,2001,6:100-104.
[17]  Pottosin Ⅱ,Sch nknecht G. Vacuolar calcium channels. J Exp Bot,2007,58:1559-1569.
[18]  Hu X,Xiang C,Cao L et al. A mathematical model for ATP-mediated calcium dynamics in vascular endothelial cells induced by fluid shear stress. Appl Math Mech-Engl,2008,29:1291-1298.
[19]  Karjalaincn H,Stefansdottir G,Tuominen L et al. Do submersed plants enhance microbial activity in sediment? Aquat Bot,2001,69(1):1-13.
[20]  Hupfer M,Dollan A. Immobilisation of phosphorous by ion-coated roots of submerged macrophytes. Hydrobiologia,2003, 506/509:635-640.
[21]  Gao J,Xiong Z,Zhang J et al. Phosphorus removal from water of eutrophic Lake Donghu by five submerged macrophytes. Desalination,2009,242(1/2/3):193-204.
[22]  Withers PJA,Jarvie HP. Delivery and cycling of phosphorus in rivers:A review. Sci Total Environ,2008,400:379-395.
[23]  Gainswin BE,House WA,Leadbetter BSC et al. The effects of sediment size fraction and associated algal biofilms on the kinetics of phosphorus release. Sci Total Environ,2006,360:142-157.
[24]  Jarvie HP,Mortimer RJG,Palmer-Felgate EJ et al. Measurement of soluble reactive phosphorus concentration profiles and fluxes in river-bed sediments using DET get probes. J Hydrol,2008,350:261-273.
[25]  House WA. Geochemical cycling of phosphorus in rivers. Appl Geochem,2003,18:739-748.
[26]  Dodds WK. The role of periphyton in phosphorus retention in shallow freshwater aquatic systems. J Phycol,2003,39:840-849.
[27]  McDowell RW. Sediment phosphorus chemistry and microbial biomass along a lowland New Zealand stream. Aquat Geochem, 2003,9:19-40.
[28]  Siong K,Asaeda T,Fujino T et al. Difference characteristics of phosphorus in Chara and two submerged angiosperm species:implications for phosphorus nutrient cycling in an aquatic ecosystem. Wetl Ecol Manage,2006,14:505-510.
[29]  Jarvie HP,Neal C,Warwick A et al. Phosphorus uptake into algal biofilms in a lowland chalk river. Sci Total Environ, 2002,282/283:353-373.
[30]  徐会玲,唐智勇,朱端卫等. 菹草、伊乐藻对沉积物林形态及其上覆水水质的影响. 湖泊科学,2010,22(3):437-444.
[31]  Schulz HN,Schulz HD. Largesulfur bacteria and the formation of phosphorite. Science,2005,307:416-418.
[32]  Lee CW,Kwon HB,Jeon HP et al. A new recycling material for removing phosphorus from water. J Clean Prod,2009, 17:683-687.
[33]  更多...
[34]  Walpersdorf E,Neumann T,Stüuben D. Efficiency of natural calcite precipitation compared to lake marl application used for water quality improvement in an eutrophic lake. Appl Geochem,2004,19:1687-1698.
[35]  Song Y,Weidler PG,Berg U et al. Calcite-seeded crystallization of calcium phosphate for phosphorus recovery. Chemosphere, 2006,63:236-243.
[36]  倪玲珊. 菹草对长江中游湖泊沉积物及上覆水间钙、磷循环的影响[学位论文]. 武汉:华中农业大学,2010.
[37]  Bajnóczi B,Kovács-Kis V. Origin of pedogenic needle-fiber calcite revealed by micromorphology and stable isotope composition-a case study of a Quaternary paleosol from Hungary. Chemie der Erde,2006,66:203-212.
[38]  赵海超,赵海香,王圣瑞等. 沉水植物对沉积物及土壤垂向各形态无机磷的影响. 生态环境,2008,17(1):74-80.
[39]  White PJ. The pathways of calcium movement to the xylem. J Exp Bot,2001,52:891-899.
[40]  Deng D,Wu S,Wu F et al. Effects of root anatomy and Fe plaque on arsenic uptake by rice seedlings grown in solution culture. Environ Pollut,2010,158:2589-2595.
[41]  Connell EL,Colmer TD,Walker DI. Radial oxygen loss from intact roots of Halophila ovalis as a function of distance behind the root tip and shoot illumination. Aquat Bot,1999,63:219-228.
[42]  Cholewa E,Peterson CA. Evidence for symplastic involvement in the radial movement of calcium in onion roots. Plant Physiol,2004,134:1793-1802.
[43]  Ramadan T. Ecophysiology of salt excretion in the xero-halophyte Reaumuria hirtella. New Phytol,1998,139:273-281.
[44]  刘志华,时丽冉,赵可夫. 獐茅盐腺形态结构及其泌盐性. 植物生理与分子生物学学报,2006,32:420-426.
[45]  White PJ,Broadley MR. Calcium in plants. Ann Bot,2003,92:487-511.
[46]  Barat R,Montoya T,Borrás L et al. Interactions between calcium precipitation and the polyphosphate-accumulating bacteria metabolism. Water Res,2008,42:3415-3424.
[47]  杨洪强,张连忠,戚金亮等. 苹果砧木根系钙素吸收动力学研究. 园艺学报,2003,30(3):253-257.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133