全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
湖泊科学  2004 

集水区尺度景观格局与过程的时空动态分析:美国俄勒冈州塞勒支盆地1977-2000年的变化

DOI: 10.18307/2004.sup17

Keywords: 集水区|遥感|干扰|景观格局|碳通量和贮量

Full-Text   Cite this paper   Add to My Lib

Abstract:

在集水区尺度利用景观生态学的原理进行分析和管理是现代生态学与地理科学的一个重要课题.在人口增长和经济发展的压力下,集水区的格局和过程己受到人类活动越来越强烈地干扰.赛勒支盆地是一个典型的美国太平洋西北部沿海地区的集水区,本文以此为例,研宄了美国俄勒冈州中部集水区尺度的景观格局和过程在人类活动干扰下的时空动态.通过卫星遥感影像的应用,我们对1977年到2000年间赛勒支盆地土地覆盖的变化进行了检测.我们用陆地资源卫星1977年的多光谱影像(MSS),1988年的专题影像(TM)'2000年的增强专题影像(ETM+)高精度地定量分析了森林演替系列(如,演替后期的老针叶林和成熟针叶林,演替前期的年轻针叶林,以及更新的幼林)和其它土地覆盖类型的变化.景观的空间格局通过多种格局指数,例如,缀块指数、缀块形状复杂性指数、以及连接指数等进行了分析.同时,基于美国太平洋西北部主要森林类型和其它土地覆盖类型碳通量和碳贮量的空间数据库和文献资料,我们对1977-2000年赛勒支盆地中的碳库及其在人类活动干扰下的变化作了测定.研宄结果揭示出,因为森林皆伐,老针叶林和成熟针叶林在1977-2000年间显著地减少,分别由占整个盆地土地覆盖面积的23%和12%,减少为12%和7%;与此相反,年轻针叶林和无林地则分别从24%和5%增加为43%和14%.同时,因为采伐等干扰,留存的老针叶林和成熟针叶林空间分布格局的破碎度也迅速增加.集水区的碳收支在1977-2000期间发生了巨大的变化.在收获干扰的压力下,在1977-2000年间,整个集水区的生态系统碳贮量从17640797t减少到13405720t;净生态系统生产力(NetEcosystemProduction,NEP)由每年100462tC减少为每年76800tC.

References

[1]  2 Turner M G, Gardner R H and O5Neill R V. Landscape Ecology in Theory and Practice, Pattern and Process. Springer, New York and Berlin, 2001:401 pp
[2]  8 Turner D, Gurzy M, Lefsky M A, Tuyl S V, Sun O J, Daly C, Law B E, Effects of land use and fine scale environmental heterogeneity on net ecosystem production over a temperate coniferous forest landscape. Tellus (B), 2002
[3]  10 Barrent E C, Curtis L F. Introduction to environmental remote sensing (Fourth Edition). Stanley Thornes (Publishers) Ltd., London. 1999:457
[4]  12 Cohen W B, Spies T A, Fiorella M. Estimating the age and structure of forests in a multi-ownership landscape of western Oregon, U.S.A. International Journal of Remote Sensing, 1995, 16:721-746
[5]  14 Jensen J R. Remote Sensing of the Environment:An earth resource perspective. Prentice Hall, New Jersey, 1999, 544 pp
[6]  15 Lachowski H, Maus P. Guidelines for the use of digital imagery for vegetation mapping. USDA, Forest Service, EM-7140-25, 1996,125 pp
[7]  16 Jiang H, Strittholt J R, Frost P A. The classification of late seral forests in PNW, USA using Landsat ETM+ imagery. Remote Sensing of Environment, (in review). 2003
[8]  19 Staus N L, Strittholt J R, Dellasala D A, Robinson R. Rate and pattern of forest disturbance in the Klamath-Siskiyou ecoregion,USA between 1972 and 1992. Landscape Ecology, 2002,17:455-470
[9]  20 Franklin S E, Lavigne M B, Deuling M J, Wulder M A, Hunt E R Jr. Landsat TM derived forest covertypes for modeling net primary production. Canadian Journal fremote sensing, 1997,243-251
[10]  25 Odin C D, Jiang H, Strittholt J R, Frost E J, DellaSala D A. Fire history and severity patterns and forest management in the Klamath National Forest, Northwestern California, USA. Conservation Biology (in press). 2003
[11]  26 Cohen W B, Harmon M E, Wallin D O, Fiorella M. Two decades of carbon flux from forests of the Pacific Northwest, estimate from a new modeling strategy. Bioscience, 1996,46 (11):836-844
[12]  1 Forman R T. Land mosaics, the ecology of landscapes and regions. Cambridge University Press. 2001,632 pp
[13]  3 Turner M G. edit. Landscape Heterogeneity and disturbance. Springer, New York. 1987:239 pp
[14]  4 Turner M G, Wear D N, Flamm R O, Land ownership and land-cover change in the southern Appalachian highlands and the Olympic peninsula. Ecological Application, 1996,6(4):1150-1172
[15]  5 Spies T A, Ripple W J, Bradshaw G A. Dynamics and pattern of a managed coniferous forest landscape. Ecological Applications, 1994,4:555-568
[16]  6 Wu Y, Strahler A H. Remote estimation of crown size, stand density, and biomass on the Oregon transect. Ecological Applications, 1994,4(2):299-312
[17]  7 Griffiths G H, Lee J, and Eversham B C. Landscape pattern and species richness:regional scale analysis from remote sensing. Int. J. Remote Sensing, 2000,21:2685-2704
[18]  9 Harmon M E, Ferrell W K, Franklin J F. Effects on carbon storage of conversion of old-growth forests to young forests. Science, 1990,247:699-702
[19]  11 Cohen W B, Maiersperger T K, Spies T A, Oetter O R. Modeling forest cover attributes as continuous variables in a regional context with Thematic Mapper data. International Journal of Remote Sensing, 2001, 22:2279-2310
[20]  13 Lillesand T M, Kiefer R W. Remote sensing and image interpretation (Fourth editions). John Willey & Sons, Inc. New York, 2000,723 pp
[21]  17 Wayman J P, Wynne R H, Scrivani J A, Reams G. A. Landsat TM-based forest area estimation using iterative guided spectral class rejection. Photogrammetric Engineering and Remote Sensing, 2001, 67:1155-1166
[22]  18 Turner M G, Gardner R H Edit. Quantitative methods in landscape Ecology. Springer, New York. 1991:536 pp
[23]  更多...
[24]  21 Steyaet L T, Hall F G, Loveland T R. Land cover mapping, fire regeneration, and scaling studies in the Canadian boreal forest with 1km AVHRR and Landsat TM data. Journal of Geographysical Research, 1997,102,D24, 29581-29598
[25]  22 Law B E, Sun O J, Campbell J, Tuyl S V, Thornton PE. Changes in carbon storage and fluxes in a chronosequence of ponderosa pine. Global Change Biology, 2003,9:510-524
[26]  23 Turner D P, Cohen W B, Kenedy R E. Alternative spatial resolutions and estimation of carbon flux over a managed forest landscape in western Oregon. Landscape, 2000, 15:441-452
[27]  24 Risser P G, Karrr J R, Forman R T T. Landscape Ecology:directions and approaches. A workshop held at Allerton Park;County Illinois, 1984, 16

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133