全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
湖泊科学  2008 

长江故道底栖动物群落特征及资源衰退原因分析

DOI: 10.18307/2008.0602

Keywords: 底栖动物,群落特征,天鹅洲,老江河

Full-Text   Cite this paper   Add to My Lib

Abstract:

2003-2004年对天鹅洲和老江河两个长江故道的调查表明,该类水体的底栖动物在类群组成上与阻隔湖泊类似,以螺类和水生昆虫为主,但是有较多的流水性和冷水性种类.纵向比较表明两个故道底栖动物生物量比20世纪90年代下降了48.3%-78.6%,软体动物尤为突出.底栖动物资源衰退的原因主要有两个,一是过度渔业,二是江湖阻隔.与长江流域其他类型水体的比较表明在中等程度水文连通的水体中底栖动物种类最多,软体动物尤其是双壳类的现存量明显较高.为发挥长江故道群对泛滥平原生物多样性维持的重要作用,文末提出了关于合理放养和季节性通江的管理建议.

References

[1]  Xie S, Nott CJ, Avsejs LA et al. Paleoclimate records in compound-specific 8D values of a lipid biomarker in ombrotrophic peat. Organic Geochemistry, 2000, 31: 1053-1057.
[2]  Saner P, Eglmton TI, Hayes JM et al. Compound-specific D/H ratios of lipid biomarkers from sediments as a proxy for environmental and climatic conditions. Geochimica et Cosmochimica Acta, 2001, 65:213-222.
[3]  Liu WG, Huang YS. Compound specific D/H ratios and molecular distributions of higher plant leaf waxes as novel paleoenvironmental indicators in the Chinese Loess Plateau. Organic Geochemistry, 2005, 36: 851-860.
[4]  Sessions AL, Burgoyne TW, Schimmetmann A et al. Fractionation of hydrogen isotopes in lipid biosynthesis. Organic Geochemistry, 1999, 30:1193-1200.
[5]  Schimmelmann A, Lewan MD, Wintsch PP. D/H isotope ratios of kerogen, bitumen, oil, and water in hydrous pyrolysis of source rocks containing kerogen types Ⅰ, Ⅱ, and Ⅲ. Geochimica et Cosmochimica Acta, 1999, 63:3751-3766.
[6]  Glinton GE, Hamilton RJ. Leaf epicuticular waxes. Science, 1967, 156(3780): 1322-1335.
[7]  Cranwell PA, Eglinton G, Robinson N. Lipids of aquatic organisms as potential contributors to lacustrine sediments-Ⅱ. Organic Geochemistry, 1987, 11(6): 513-527.
[8]  Dawson D, Grice K. Stable hydrogen isotopic composition of hydrocarbons in torbanite (Late Carboniferous to Late Permian) deposited under various climatic conditions. Organic Geochemistry, 2004, 35: 189-197.
[9]  Sachse D, Radke J, Gleixner CJ. Delta D values of individual n-alkanes from terrestrial plants along a climatic gradient-Implications for the sedimentary biomarker record. Organic Geochemistry, 2006, 37(4): 469-483.
[10]  Hilkert AW, Douthitt CB, Schluter HJ et al. Isotope ratio monitoring gas chromatography/mass spectrometry of D/H by high temperature conversion isotope ratio mass spectrometry. Rapid Communication in Mass Spectrometry, 1999, 13: 1226-1230.
[11]  Cranwell PA. Chain-length distribution of n-alkanes from lake sediments in relation to post-glacial environmental change. Freshwater Biol, 1973, (3): 259-265.
[12]  Meyers PA, Ishiwatari R. Lacustrine organic geochemistry--an overview of indicators of organic matter sources and diagenesis in lake sediments. Organic Geochemistry 1993, 20(7): 867-900.
[13]  游庆龙 康世昌 李潮流等.青藏高原纳木错气象要素变化特征[J].气象,2007,33(3):54-60.
[14]  汪青春 张国胜.柴达木地区春小麦生长季光能和光合特征分析[J].甘肃农林科技,1997,(4):4-6.
[15]  Hou SG, Masson-Delmotte V, Qin DH et al. Modem precipitation stable isotope vs. elevation gradients in the High Himalaya. Comment on“A new approach to stable isotope-based paleoaltimetry: implications for paleoaltimetry and paleohypsometry of the High Himalaya since the Late Miocene”by David B. Rowley et al.[Eartb Planet. Sci. Lett.,2001,188:253-268]. Earth and Planetary Science Letters, 2003, 209: 395-399.
[16]  李明财 易现峰 李来兴 张晓爱.基于稳定碳同位素技术研究青藏高原东部高寒区植被的光合型[J].西北植物学报,:.
[17]  李相博 陈践发.青藏高原(东北部)现代植物碳同位素组成特征及其气候信息[J].沉积学报,:.
[18]  王谋 李勇 黄润秋等.青藏高原腹地植物碳同位素组成对环境条件的响应[J].山地学报,2005,23(3):274-279.
[19]  Andersen N, Paul HA, Bernasconi SM et al. Large and rapid climate variability during the Messinian salinity crisis:evidence from deuterium concentrations of individual biomarkers. Geology, 2001, 29: 799-802.
[20]  Huang Y, Shuman B, Wang Yet al. Hydrogen isotope ratios of individual lipids in lake sediments as novel tracers of climatic and environmental change: a surface sediment test. Journal of Paleolimnology, 2004, 31: 363-375.
[21]  Yang H, Huang Y. Preservation of lipid hydrogen isotope ratios in Miocene lacustrine sediments and plant fossils at Clarkia, northern Idaho, USA. Organic Geochemirtry, 2003, 34: 413-423.
[22]  Sachse D, Radke J, Gleixner G. Hydrogen isotope ratios of recent lacustrine sedimentary n-alkanes record modem climate variability. Geochimica et Cosmochimica Acta, 2004, 68(23): 4877-4889.
[23]  Ficken KJ, Li B, Swain DL et al. An n-alkane proxy for the sedimentary input of sublnerged/floating freshwater aquatic macrophytes. Organic Geochemistry, 2000, 31(7-8): 745-749.
[24]  Han J, Calvin M. Hydrocarbon Distribution of Algae and Bacteria and Microbiological Activity in Sediments. Proceedings of the National Academy of Sciences, 1969, 64(2): 436-443.
[25]  Burgoyne TW, Hayes JM. Quantitative production of H2 by pyrolysis of gas chromatographic effluents. Analytical Chemistry, 1998, 70: 5136-5141.
[26]  Rieley G, Collier RJ, Jones DM et al. The biogeochernistry of Ellesmere lake, UK- 1 : Source correlation of leaf wax inputs to the sedimentary lipid record. Organic Geochemistry, 1991, 17(6): 901-912.
[27]  更多...
[28]  Fisher E, Oldfield F, Wake R et al. Molecular marker records of land use change. Organic Geochemistry, 2003, 34(1 ): 105-119.
[29]  Liu WG, Yang H, Li LW. Hydrogen isotopic compositions of n-alkanes from terrestrial plants correlate with their ecological life forms. Oecologia, 2006, 150(2): 330-338.
[30]  宗浩 王成善 黄川友 等.纳木错流域自然生态特征与生物资源保护研究[J].成都理工大学学报:自然科学版,2004,31(5):551-558.
[31]  段水强.德令哈盆地湖泊湿地变化与生态需水初步研究[J].中国农村水利水电,2005,(9):22-23.
[32]  胡玉民 崔向红.德令哈市地下水资源开发利用浅析[J].青海环境,2002,12(4):161-162.
[33]  谭淑琼 安姬 刘瑛.拉萨地区农业气候资源分析[J].西藏农业科技,2007,29(3):31-33.
[34]  闫巍 张宪洲 石培礼 等.青藏高原高寒草甸生态系统CO2通量及其水分利用效率特征[J].自然资源学报,2006,21(5):756-767.
[35]  中国科学院中国植被图编辑委员会.1:1000000中国植被图集[M].北京:科学出版社,2001.
[36]  Chikaraishi Y, Naraoka H. Compound-specific δD-δ^13C analyses of n-alkanes extracted from terrestrial and aquatic plants. Phytochemistry, 2003, 63: 361-371.
[37]  Hou JZ, D\\'Andrea W J, MacDonald D et al. Hydrogen isotopic variability in leaf waxes among terrestrial and aquatic plants around Blood Pond, Massachsetts (USA). Organic Geochemistry, 2007, 38: 977-984.
[38]  Smith FA, Freeman KH. Influence of physiology and climate on 6D of leaf wax n-alkanes from C3 and C4 grasses. Geochimica et Cosmochimica Acta, 2006, 70:1172-1187.
[39]  Flanagaa LB, Comstock JP, Ehteringer JR. et al. Comparison of modeled and observed environmental influences on the stable oxygen and hydrogen isotope composition of leaf water in Phaseolus vulgaris L. Plant Physiology, 1991, 96: 588-596.
[40]  陈拓 冰虎元 等.青藏高原北部植物叶片碳同位素组成的空间特征[J].冰川冻土,:.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133