全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
湖泊科学  2008 

太湖表层沉积物AVS与SEM分布特征及相互关系

DOI: 10.18307/2008.0506

Keywords: AVS与SEM,重金属,沉积物质量,太湖

Full-Text   Cite this paper   Add to My Lib

Abstract:

对全太湖28点的表层沉积物中的AVS及SEM的分布特征与相关性进行研究.结果表明:表层沉积物的AVS浓度在空间分布上具有较大的波动(变异系数达100.77%),河口沉积物中赋存高浓度的AVS.结合AVS的分布特征得知:沉积速率及SO42-负荷可能是造成AVS空间差异性的原因.河口区域具有较高浓度的∑SEM;太湖北部湖区沉积物中的∑SEM浓度高于南部.应用SEM/AVS,SEM-AVS及SEM-AVS/fOC这三个模型来评价太湖表层沉积物的质量(当SEM/AVS>9或SEM-AVS>2或SEM-AVS/fOC>150μmol/g(OC)时,沉积物重金属将具有毒性),结果表明:只有0#号点和6#号点超过这三个模型其中的一个和两个的阈值范围,其它采样点均在阈值范围之内.总之,除0#号点和6#号点外,太湖表层沉积物(约10cm)中重金属不会对底栖生物产生明显毒性.

References

[1]  Steven W, John MC, John H et al. Sulfide species as a sink for mercury in lake sediments. Environ Sci Technol, 2005, 39: 6644-6648.
[2]  Di Toro DM, Mahony JD, Hansen DJ et al. Acid volatile sulphide predicts the acute toxicity of cadmium and nickel in sediments. Environ Sci Technol, 1991, 26: 96-101.
[3]  Di Toro DM, Mahoney JD, Hansen DJ et al. Toxicity of cadmium in sediments: the role of acid volatile sulfide. Environ Toxicol Chem, 1990, 9: 1487-1502.
[4]  Di Toro MD, McGrath JA, Hansen DJ et al. Predicting sediment metal toxicity using a sediment biotic ligand model: Methodology and initial application. Environ Toxicol Chem, 2005, 24: 2410-2427.
[5]  Burton GA, Green A, Baudo R et al. Characterizing sediment acid volatile sulfide concentration in European streams. Environ Toxicol Chem, 2007, 26(1): 1-12.
[6]  Griethuysen CA, Erwin WM, Koelmans AA. Spatial variation of metals and acid volatile sulfide in floodplain lake sediment. Environ Toxicol Chem, 2003, 22(3): 457-465.
[7]  Hsieh YP, Shieh YN. Analysis of reduced inorganic sulfur by diffusion methods: improved apparatus and evaluation for sulfur isotopic studies. Chem Geol, 1997, 137: 255-261.
[8]  Leonard EN, Cotter AM, Ankley GT. Modified diffusion method for analysis of acid volatile sulphides and simultaneously extracted metals in freshwater sediment. Environ Toxicol Chem, 1996, 15: 1479-1481.
[9]  Glenn AU, Lee RK, Suflita JM. A rapid and simple method for estimating sulfate reduction activity and quantifying inorganic sulfides. Appl Environ Microbil, 1997, 63(4): 1627-1630.
[10]  范成新 吉志军 等.太湖宜溧河水系沉积物的重金属污染特征[J].湖泊科学,:.
[11]  Hare L, Carignan R, Huerta-Diaz MA. A field study of metal toxicity and accumulation by benthic invertebrates, implications for the acid-volatile sulfide (AVS) model. Limnol Oceanogr, 1994, 39: 1653-1668.
[12]  李金城 宋进喜 王晓荣.太湖五里湖区表层沉积物中挥发性硫化物和同步提取金属[J].湖泊科学,2004,16(1):77-80.
[13]  Leonard EN, Mattson VR, Benoit DA et al. Seasonal variation of acid volatile sulfide concentration in sediment cores from three northeastern Minnesota lakes. Hydrobiologia, 1993,271: 87-95.
[14]  Oehm NJ, Luben TJ, Ostrofsky ML. Spatial distribution of acid-volatile sulfur in the sediments of Canadohta Lake, PA. Hydrobiologia, 1997, 345: 79-85.
[15]  Otero XL, Ferreira TO. Spatial variation in pore water geochemistry in a mangrove system (PaiMatos island,Cananeia-Brazil). Applied Geochemistry, 2006, 21: 2171-2186.
[16]  王海 王春霞 等.太湖表层沉积物中重金属的形态分析[J].环境化学,:.
[17]  Burton GA, Nguyen LTH, Janssen C et al. Field validation of sediment Zinc toxicity. Environ Toxicol Chem, 2005, 24: 541-553.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133