全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
湖泊科学  2008 

棕鞭毛虫牧食作用对铜绿微囊藻形态和生理特性的影响

DOI: 10.18307/2008.0401

Keywords: 棕鞭毛虫,铜绿微囊藻,群体形成,酯酶活性,叶绿素,细胞尺寸

Full-Text   Cite this paper   Add to My Lib

Abstract:

在纯培养的铜绿微囊藻种群中添加有效牧食者棕鞭毛虫,进行为期9d的实验,用流式细胞仪检测棕鞭毛虫牧食作用对铜绿微囊藻的影响.结果表明棕鞭毛虫的牧食导致微囊藻种群迅速下降,同时微囊藻种群出现了群体形成现象.棕鞭毛虫直接牧食作用诱发微囊藻形成群体后,能在一定程度上能防御棕鞭毛虫的进一步牧食,使得种群得以延续.在棕鞭毛虫的牧食作用下,以酯酶活性和叶绿素荧光强度为代表的微囊藻细胞活性在实验后期显著增强.而牧食处理后细胞尺寸有所变小,这可能是伴随着微囊藻诱发性群体形成过程中一种生态对策的调整,保持较小的个体有利于种群的迅速增殖.

References

[1]  Bolch CJS, Blackburn SI. Isolation and purification of Australian isolates of the toxic cyanobacterium Microcystis aeruginosa Kutz. Journal Applied Phycology, 1996, 8: 5-13.
[2]  Yang Z, Kong FX, Shi XL et al. Differences in response to rotifer Brachionus urceus culture media filtrate between Scenedesmus obliquus and Microcystis aeruginosa. Journal of Freshwater Ecology, 2006, 21(2): 209-214.
[3]  Yang Z, Kong FX, Shi XL et al. Changes in the morphology and polysaccharide content of Microcystis aeruginosa (CYANOBACTERIA) during flagellate grazing. Journal of Phycology, 2008, 44(3): in press.
[4]  Rippka R, Deruelles J, Waterbury J et al. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Journal of General Microbiology, 1979, 111: 1-61.
[5]  Harvell CD. The ecology and evolution of inducible defenses. The Quarterly Review of Biology, 1990, 65: 323-340.
[6]  Lurling M, van Donk E. Zooplankton-induced unicellcolony transformation in Scenedesmus acutus and its effect on growth of herbivore Daphnia. Oecologia, 1996, 108: 432-437.
[7]  Pajdak-Stos A, Fialkowska E, Fyda J. Phormidium autumnale (Cyanobacteria) defense against three ciliate grazer species. Aquatic Microbial Ecology, 2001, 23: 237-244.
[8]  Lurling M. Phanotypic plasticity in the green algae Desmodesmus and Scenedesmus with special reference to the induction of defensive morphology. Annales de Limnologie - International Journal of Limnology, 2003, 39: 85-101.
[9]  更多...
[10]  Brookes JD, Geary SM, Ganf GG et al. Use of FDA and flow cytometry to assess metabolic activity as an indicator of nutrient status in phytoplankton. Marine and Freshwater Research, 2000, 51 (8): 817-823.
[11]  Lage OM, Sansonetty F, O\\'Connor JE et al. Flow cytometric analysis of chronic arid acute toxicity of copper(II) on the marine dinoflagellate Amphidinium carterae. Cytometry, 2001, 44 (3): 226-235.
[12]  Regal RH, Ferris JM, Ganf GG et al. Algal esterase activity as a biomeasure of environmental degradation in a freshwater creek. Aquatic Toxicology, 2002, 59(3-4): 209-223.
[13]  Raven JA. The twelfth Tansley Lecture. Small is beautiful: the picophytoplankton. Functional Ecology, 1998, 12: 503-513.
[14]  Turpin DH, Harrison PJ. Cell size manipulation in natural marine, planktonic, diatom communities. Canadian Journal of Fisheries and Aquatic Science, 1980, 37:1193-1195.
[15]  Bianchi TS, Westman P, Rolff C et al. Cyanobacterial blooms in the Baltic Sea: Natural or human-induced? Limnology and Oceanography, 2000, 45:716-726.
[16]  Yang Z, Kong FX, Shi XL. Effects of filtered lake water on colony formation and growth rate in Microcystis aeruginosa of different physiological phases. Journal of Freshwater Ecology, 2005, 20: 425-429.
[17]  Yang Z, Kong FX, Cao HS et al. Observation on colony formation of Microcystis aeruginosa induced by filtered lake water under laboratory conditions. Annales de Limnologie - International Journal of Limnology, 2005, 41:169-173.
[18]  Yang Z, Kong FX, Shi XL et aL Morphological response ofMicrocystis aeruginosa to grazing by different sorts of zooplankton. Hydrobiologia, 2006, 563: 225-230.
[19]  Burkert U, Hyenstrand P, Drakare Set al. Effects of the mixotrophic flagellate Ochromonas sp. on colony formation in Microcystis aeruginosa. Aquatic Ecology, 2001, 35: 9-17.
[20]  Hessen DO, van Donk E. Morphological-changes in Scenedesmus induced by substances released from Daphnia. Archive Fur Hydrobiologie, 1993, 127: 129-140.
[21]  Fialkowska E, Pajdak-Stos A. Inducible defence against a ciliate grazer Pseudomicrothorax dubius, in two strains of Phormidium (cyanobacteria). Proceedings of the Royal Society B: Biological Sciences, 1997, 264: 937-941.
[22]  Boraas ME, Seale DB, Boxhorn JE. Phagotrophy by a flagellate selects for colonial prey: A possible origin of multicellularity. Evolutionary Ecology, 1998, 12: 153-164.
[23]  Jakobsen HH, Tang KW. Effects of protozoan grazing on colony formation in Phaeocystis globosa (Pryranesiophyceae) and the potential costs and benefits. Aquatic Microbial Ecology, 2002, 27: 261-273.
[24]  Tang KW. Grazing and colony size development in Phaeocystis globosa (Prymnesiophyceae): the role of a chemical signal. Journal of Plankton Research, 2003, 25:831-842.
[25]  van Holthoon FL, van Beek TA, Lurling Met al. Colony formation in Scenedesmus: a literature overview and further steps towards the chemical characterisation of the Daphnia kairomone. Hydrobiologia, 2003, 491:241-254.
[26]  Wiltshire K, Boersma M, Meyer B. Grazer-induced changes in the desmid Staurastrum. Hydrobiologia, 2003, 491: 255-260.
[27]  Tanaka Y, Yamaguchi N, Nasu M. Viability of Escherichia coli O157:H7 in natural river water determined by the use of flow cytometry. Journal of Applied Microbiology, 2000, 88 (2): 228-236.
[28]  Myklestad S. Release of extracellular products by phytoplankton with special emphasis on polysaccharides. The Science of the Total Environment, 1995, 165:155 - 164.
[29]  De Philippis R, Vincenzini M. Exocellular polysaccharides from cyanobacteria and their possible applications. FEMS Microbiology Reviews, 1998, 22: 151-175.
[30]  De Philippis R, Sili C, Vincenzini M. Response of an exopolysaccharide -producing heterocystous cyanobacterium to changes in metabolic carbon flux. Journal of AppliedPhycology, 1996, 8: 275-281.
[31]  van Rijssel M, Janse I, Noordkamp DJB et al. An inventory of factors that effect polysaccharide production by Phaeocystis globosa. Journal of Sea Research, 2000, 43: 297-306.
[32]  Thornton DO. Diatom aggregation in the sea: mechanisms and ecological implications. European Journal of Phycology, 2002, 37: 149-161.
[33]  Kohata K, Watanabe M. Diel changes m the composition of photosynthetic pigment and cellular carbon and nitrogen in Chattonella Antigua (Raphidophyceae). Journal of Phycology, 1988, 24: 58-66.
[34]  Smith REH, KalffJ. Size-dependent phosphorous uptake kinetics and cell quota in phytoplankton. Journal of Phycology, 1982, 18: 275-294.
[35]  王进 李建宏 华秀红等.吞噬微囊藻的鞭毛虫的培养[J].湖泊科学,2005,17(2):183-187.
[36]  Tillmann U. Interactions between planktonic microalgae and protozoan grazers. Journal of Eukaryotic Microbiology, 2004, 51(2): 156-168.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133