Agrawal AA. Phenotypic plasticity in the interactions and evolution of species. Science, 2001, 294: 321-326.
[2]
Benard MF. Predator-induced phenotypic plasticity in organisms with complex life histories. Annual Review of EcologyEvolution and Systematics, 2004, 35: 651-673.
[3]
Werner EE, Peacor SD. A review of trait-mediated indirect interactions in ecological communities. Ecology, 2003, 84:1083-1100.
[4]
Weetman D, Atkinson D. Antipredator reaction norms for life history traits in Daphnia pulex: dependence on temperature andfood. Oikos, 2002, 98: 299-307.
[5]
Taylor B, Gabriel W. To grow or not to grow: optimal resource allocation for Daphnia. The American Naturalist, 1992, 139:258-266.
[6]
Riessen HP. Predator-induced life history shifts in Daphnia: a synthesis of studies using meta-analysis. Canadian Journal ofFisheries and Aquatic Sciences, 1999, 56: 2487-2494.
[7]
Spaak P, Vanoverbeke J, Boersma M. Prodator-induced life-history changes and the coexistence of five taxa in a Daphniaspecies complex. Oikos, 2000, 89: 164-174.
[8]
Castro BB, Consciência S, Gon?alves F. Life history responses of Daphnia longispina to mosquitofish (Gambusia holbrooki)and pumpkinseed (Lepomis gibbosus) kairomones. Hydrobiologia, 2007, 594: 165-174.
[9]
Dzialowski AR, Lennon JT, O\'Brien WJ et al. Predator-induced phenotypic plasticity in the exotic cladoceran Daphnialumholtzi. Freshwater Biology, 2003, 48: 1593-1602.
[10]
Weber A. More than one ‘fish kairomone\'? Perch and stickleback kairomones affect Daphnia life history traits differently.Hydrobiologia, 2003, 498: 143-150.
[11]
Burks RL, Jeppesen E, Lodge DM. Macrophyte and fish chemicals suppress Daphnia growth and alter life-history traits. Oikos,2000, 88: 139-147.
[12]
Mikulski A. The presence of fish induces the quick release of offspring by Daphnia. Hydrobiologia, 2001, 442: 195-198.
[13]
Declerck S, Weber A. Genetic differentiation in life history between Daphnia galeata populations: an adaptation to localpredation regimes. Journal of Plankton Research, 2003, 25(1): 93-102.
[14]
Hanazato T, Fueki K, Yoshimoto M. Fish-induced life-history shifts in the cladocerans Daphnia and Simocephalus: are theypositive or negative responses? Journal of Plankton Research, 2001, 23: 945-951.
[15]
Walls M, Laurén-M??tt? C, Ketola M et al. Phenotypic plasticity of Daphnia life history traits: the roles of predation, food leveland toxic cyanobacteria. Freshwater Biology, 1997, 38: 353-364.
[16]
Stibor H, Lampert W. Components of additive variance in life-history traits of Daphnia hyaline: seasonal difference in theresponse to predator signals. Oikos, 2000, 88: 129-138.
[17]
Boersma M, Spaak P, De Meester L. Predator-Mediated plasticity in morphology, life history, and behavior of Daphnia: theuncoupling of responses. The American Naturalist, 1998, 152: 237-248.
[18]
Lass S, Vos M, Wolinska J et al. Hatching with the enemy: Daphnia diapausing eggs hatch in the presence of fish kairomones.Chemoecology, 2005, 15: 7-12.
[19]
Gliwicz ZM, Maszczyk P. Daphnia growth is hindered by chemical information on predation risk at high but not at low foodlevels. Oecologia, 2007, 150: 706-715.
[20]
?luarczyk M. Food threshold for diapause in Daphnia under the threat of fish predation. Ecology, 2001, 82(4): 1089-1096.
[21]
Weber A, Vesela S. Optimising survival under predation: chemical cues modify curvature in Daphnia galeata. Aquatic Ecology,2002, 36: 519-527.
[22]
Spaak P, Boersma M. Tail spine length in the Daphnia galeata complex: costs and benefits of induction by fish. AquaticEcology, 1997, 31: 89-98.
[23]
Riccardi N, Giussani G, Lagorio L. Morphological variation and life history changes of a Daphnia hyaline population exposedto Chaoborus flavicans larvae predation (L. Candia, Northern Italy). Journal of Limnology, 2002, 61(1): 41-48.
Caramujo MJ, Boavida MJ. Induction and costs of tail spine elongation in Daphnia hyaline×galeata: reduction of susceptibilityto copepod predation. Freshwater Biology, 2000, 45: 413-423.
[26]
Laforsch C, Tollrian R. Embryological aspects of inducible morphological defenses in Daphnia. Journal of Morphology, 2004,262: 701-707.
[27]
Weber A, van Noordwijk A. Swimming behaviour of Daphnia clones: differentiation through predator infochemicals. Journal ofPlankton Research, 2002, 24: 1335-1348.
[28]
Szulkin M, Dawidowicz P, Dodson SI. Behavioural uniformity as a response to cues of predation risk. Animal Behaviour, 2006,71: 1013-1019.
[29]
De Meester L, Cousyn C. The change in phototactic behaviour of a Daphnia magna clone in the presence of fish kairomones:the effect of exposure time. Hydrobiologia, 1997, 360: 169-175.
[30]
Michels E, De Meester L. Inter-clonal variation in phototactic behaviour and key life-history traits in a metapopulation of thecyclical parthenogen Daphnia ambigua: the effect of fish kairomones. Hydrobiologia, 2004, 522: 221-233.
[31]
Kleiven OT, Larsson P, Hob?k A. Direct distributional response in Daphnia pulex to a predator kairomone. Journal of PlanktonResearch, 1996, 18(8): 1341-1348.
[32]
Jeschke JM, Tollrian R. Prey swarming: which predators become confused and why? Animal Behaviour, 2007, 74: 387-393.
[33]
Bollens SM, Frost BW. Diel vertical migration in zooplankton: rapid individual response to predators. Journal of PlanktonResearch, 1991, 13: 1359-1365.
[34]
Burks BL, Lodge DM, Jeppesen E et al. Diel horizontal migration of zooplankton: costs and benefits of inhabiting the littoral.Freshwater Biology, 2002, 47: 343-365.
[35]
Van Gool E, Ringelberg J. Light-induced migration behaviour of Daphnia modified by food and predator kairomones. AnimalBehaviour, 1998, 56: 741-747.
[36]
Loose CJ, Dawidowicz P. Trade-offs in diel vertical migration by zooplankton: the costs of predator avoidance. Ecology, 1994,75: 2255-2263.
[37]
Beklioglu M, Gozen AG, Yildirim F et al. Impact of food concentration on diel vertical migration behaviour of Daphnia pulexunder fish predation risk. Hydrobiologia, 2008, 614: 321-327.
[38]
Abrams PA, Rowe L. The effects of predation on the age and size of maturity of prey. Evolution, 1996, 50: 1052-1061.
[39]
Beckerman AP, Wieski K, Baird DJ. Behavioural versus physiological mediation of life history under predation risk. Oecologia,2007, 152: 335-343.
[40]
Stibor H, Machá?ek J. The influence of fish-exuded chemical signals on the carbon budget of Daphnia. Limnology andOceanography, 1998, 43(5): 997-1000.
[41]
Pijanowska J, Kloc M. Daphnia response to predation threat involves heat-shock proteins and the action and tubulincytoskeleton. Genesis, 2004, 38: 81-86.
[42]
Stibor H. The role of yolk protein dynamics and predator kairomones for the life history of Daphnia Magna. Ecology, 2002, 83:362-369.
[43]
?luarczyk M, Rygielska E. Fish faeces as the primary source of chemical cues inducing fish avoidance diapause in Daphniamagna. Hydrobiologia, 2004, 526: 231-234.
[44]
Cousyn C, De Meester L, Colbourne JK et al. Rapid, local adaptation of zooplankton behavior to changes in predation pressurein the absence of neutral genetic changes. PNAs, 2001, 98(11): 6256-6260.
[45]
Lampert W. The adaptive significance of diel vertical migration of zooplankton. Functional Ecology, 1989, 3: 21-27.
[46]
Winder M, Boersma M, Spaak P. On the cost of vertical migration: are feeding conditions really worse at greater depths?Freshwater Biology, 2003, 48: 383-393.
[47]
Pohnert G, Steinke M, Tollrian R. Chemical cues, defence metabolites and the shaping of pelagic interspecific interactions.Trends in Ecology and Evolution, 2007, 22(4): 198-204.
[48]
Hoverman JT, Auld JR, Relyea RA. Putting prey back together again: integrating predator-induced behavior, morphology, andlife history. Oecologia, 2005, 144: 481-491.
[49]
Lass S, Spaak P. Temperature effects on chemical signaling in a predator-prey system. Freshwater Biology, 2003, 48: 669-677.
[50]
Reede T. Effects of neonate size and food concentration on the life history responses of a clone of the hybrid Daphniahyaline×galeata to fish kairomones. Freshwater Biology, 1997, 37: 389-396.
[51]
Sakwińska O. Response to fish kairomones in Daphnia galeata life history traits relies on shift to earlier instar at maturation.Oecologia, 2002, 131: 409-417.
[52]
?luarczyk M. Predator-induced diapause in Daphnia. Ecology, 1995, 76(3): 1008-1013.
[53]
Reznick D, Bryant MJ, Bashey F. r-and K- selection revisited: the role of population regulation in life-history evolution.Ecology, 2002, 83: 1509-1520.
[54]
更多...
[55]
Repka S, Walls M. Variation in the neonate size of Daphnia pulex: the effects of predator exposure and clonal origin. AquaticEcology, 1998, 32: 203-209.
[56]
Pijanowska J, Kowalczewski A. Predators can induce swarming behaviour and locomotory responses in Daphnia. FreshwaterBiology, 1997, 37: 649-656.
[57]
Weber A, Declerck S. Phenotypic plasticity of Daphnia life history traits in response to predator kairomones: genetic variabilityand evolutionary potential. Hydrobiologia, 1997, 360: 89-99.
[58]
Parejko K. Embryology of Chaoborus-induced spines in Daphnia pulex. Hydrobiologia, 1992, 231: 77-84.
[59]
?luarczyk M. Predator-induced diapause in Daphnia magna may require two chemical cues. Oecologia, 1999, 119: 159-165.
[60]
Pijanowsk J, Stolpe G. Summer diapause in Daphnia as a reaction to the presence of fish. Journal of Plankton Research, 1996,18: 1407-1412.
[61]
Reede T. Life history shifts in responses to different levels of fish kairomones in Daphnia. Journal of Plankton Research, 1995,17: 1661-1667.
[62]
Sakwińska O. Plasticity of Daphnia magna life history traits in response to temperature and information about a predator.Freshwater Biology, 1998, 39: 681-687.
[63]
Tollrian R. Predator-induced helmet formation in Daphnia cucullata (Stars). Archiv für Hydrobiologie, 1990, 119: 191-196.
[64]
Repka S, Pihlajamaa K. Predator-induced phenotypic plasticity in Daphnia pulex: uncoupling morphological defenses and lifehistory shifts. Hydrobiologia, 1996, 339: 67-71.
[65]
Mirza RS, Pyle GG. Waterborne metals impair inducible defences in Daphnia pulex: morphology, life-history traits andencounters with predators. Freshwater Biology, 2008, in press.
[66]
Tollrian R, Heibl C. Phenotypic plasticity in pigmentation in Daphnia induced by UV radiation and fish kairomones. FunctionalEcology, 2004, 18: 497-502.
[67]
Tanner GJ, Branstrator DK. Generational and dual-species exposures to invertebrate predators influence relative head size inDaphnia mendotae. Journal of Plankton Research, 2006, 28(8): 793-802.
[68]
Gélinas M, Pinel-Alloul B, ?lusarczyk M. Formation of morphological defences in response to YOY perch and invertebratepredation in two Daphnia species coexisting in a mesotrophic lake. Hydrobiologia, 2007, 594: 175-185.
[69]
Van Gool E, Ringelberg J. Relationship between fish kairomone concentration ina lake and phototactic swimming by Daphnia.Journal of Plankton Research, 2002, 24(7): 713-721.
[70]
Pauwels K, Stoks R, De Meester L. Coping with predator stress: interclonal differences in induction of heat-shock proteins inthe water flea Daphnia magna. Journal of Evolutionary Biology, 2005, 18: 867-872.
[71]
Stibor H, Navarra M. Constraints on the plasticity of Daphnia magna influenced by fish-kairomones. Functional Ecology, 2000,14: 455-459.
[72]
Doks?ter A, Vijverberg J. The effects of food and temperature regimes on life-history responses to fish kairomones in Daphniahyalina×galeata. Hydrobiologia, 2001, 442: 207-214.
[73]
Boeing WJ, Ramcharan CW, Riessen HP. Multiple predator defence strategies in Daphnia pulex and their relation to nativehabitat. Journal of Plankton Research, 2006, 28(6): 571-584.
[74]
Barry MJ. Effects of endosulfan on Chaoborus-induced life –history shifts and morphological defenses in Daphnia pulex.Journal of Plankton Research, 2000, 22(9): 1705-1718.
[75]
Beklioglu M, Telli M, Gozen AG. Fish and mucus-dwelling bacteria interact to produce a kairomone that induces diel verticalmigration in Daphnia. Freshwater Biology, 2006, 51: 2200-2206.
[76]
Stabell OB, Ogbebo F, Primicerio R. Inducible defences in Daphnia depend on latent alarm signals from conspecific preyactivated in predators. Chemical Senses, 2003, 28: 141-153.
[77]
Tollrian R, von Elert E. Enrichment and purification of Chaoborus kairomone from water: Further steps toward its chemicalcharacterization. Limnology and Oceanography, 1994, 39: 788-796.
[78]
Von Elert E, Loose CJ. Predator-induced diel vertical migration in Daphnia: Enrichment and preliminary chemicalcharacterization of a kairomone. Journal of Chemical Ecology, 1996, 22(5): 885-895.
[79]
Noonburg EG, Nisbet RM. Behavioural and physiological responses to food availability and predation risk. EvolutionaryEcology Research, 2005, 7: 89-104.
Flik BJG, Vijverberg J. Contrasting migration behaviour of Daphnia pulicaria and D. galeata×hyalina, in avoidance ofpredation by 0 + perch (Perca fluviatilis). Hydrobiologia, 2003, 491: 289-299.
[82]
Dawidowicz P, Wielanier M. Costs of predator avoidance reduce competitive ability of Daphnia. Hydrobiologia, 2004, 562:165-169.
Bernot RJ, Dodds WK, Quist MC et al. Temperature and kairomone induced life history plasticity in coexisting Daphnia.Aquatic Ecology, 2006, 40: 361-372.