全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
湖泊科学  2009 

溞类(Daphnia)反捕食的表型可塑性及其研究进展

DOI: 10.18307/2009.0602

Keywords: 表型可塑性,浮游动物,溞类,捕食风险,信息素

Full-Text   Cite this paper   Add to My Lib

Abstract:

表型可塑性指的是生物体在生物或非生物环境发生变化时会呈现出不同的表型能力,是生物在不稳定的生活环境中维持生存的一种主要策略.在淡水生态系统,大量研究表明浮游动物能通过捕食者释放的化学信息物质感知捕食风险的存在,从而导致反捕食的表型可塑性反应的发生.溞类是一类很好的研究浮游动物对捕食者释放的信息素产生表型可塑性反应的模式生物.本文综述了捕食者释放的化学信息素对溞类的生活史、形态特征、行为活动以及生理指标等表型的影响,探讨了其形成机制和生态意义.溞类对捕食风险信息素的表型可塑性是特定种群与捕食者长期相互作用下适应性进化产生的,加强这些研究对了解物种的形成和生物的进化有非常重要的意义.

References

[1]  Agrawal AA. Phenotypic plasticity in the interactions and evolution of species. Science, 2001, 294: 321-326.
[2]  Benard MF. Predator-induced phenotypic plasticity in organisms with complex life histories. Annual Review of EcologyEvolution and Systematics, 2004, 35: 651-673.
[3]  Werner EE, Peacor SD. A review of trait-mediated indirect interactions in ecological communities. Ecology, 2003, 84:1083-1100.
[4]  Weetman D, Atkinson D. Antipredator reaction norms for life history traits in Daphnia pulex: dependence on temperature andfood. Oikos, 2002, 98: 299-307.
[5]  Taylor B, Gabriel W. To grow or not to grow: optimal resource allocation for Daphnia. The American Naturalist, 1992, 139:258-266.
[6]  Riessen HP. Predator-induced life history shifts in Daphnia: a synthesis of studies using meta-analysis. Canadian Journal ofFisheries and Aquatic Sciences, 1999, 56: 2487-2494.
[7]  Spaak P, Vanoverbeke J, Boersma M. Prodator-induced life-history changes and the coexistence of five taxa in a Daphniaspecies complex. Oikos, 2000, 89: 164-174.
[8]  Castro BB, Consciência S, Gon?alves F. Life history responses of Daphnia longispina to mosquitofish (Gambusia holbrooki)and pumpkinseed (Lepomis gibbosus) kairomones. Hydrobiologia, 2007, 594: 165-174.
[9]  Dzialowski AR, Lennon JT, O\'Brien WJ et al. Predator-induced phenotypic plasticity in the exotic cladoceran Daphnialumholtzi. Freshwater Biology, 2003, 48: 1593-1602.
[10]  Weber A. More than one ‘fish kairomone\'? Perch and stickleback kairomones affect Daphnia life history traits differently.Hydrobiologia, 2003, 498: 143-150.
[11]  Burks RL, Jeppesen E, Lodge DM. Macrophyte and fish chemicals suppress Daphnia growth and alter life-history traits. Oikos,2000, 88: 139-147.
[12]  Mikulski A. The presence of fish induces the quick release of offspring by Daphnia. Hydrobiologia, 2001, 442: 195-198.
[13]  Declerck S, Weber A. Genetic differentiation in life history between Daphnia galeata populations: an adaptation to localpredation regimes. Journal of Plankton Research, 2003, 25(1): 93-102.
[14]  Hanazato T, Fueki K, Yoshimoto M. Fish-induced life-history shifts in the cladocerans Daphnia and Simocephalus: are theypositive or negative responses? Journal of Plankton Research, 2001, 23: 945-951.
[15]  Walls M, Laurén-M??tt? C, Ketola M et al. Phenotypic plasticity of Daphnia life history traits: the roles of predation, food leveland toxic cyanobacteria. Freshwater Biology, 1997, 38: 353-364.
[16]  Stibor H, Lampert W. Components of additive variance in life-history traits of Daphnia hyaline: seasonal difference in theresponse to predator signals. Oikos, 2000, 88: 129-138.
[17]  Boersma M, Spaak P, De Meester L. Predator-Mediated plasticity in morphology, life history, and behavior of Daphnia: theuncoupling of responses. The American Naturalist, 1998, 152: 237-248.
[18]  Lass S, Vos M, Wolinska J et al. Hatching with the enemy: Daphnia diapausing eggs hatch in the presence of fish kairomones.Chemoecology, 2005, 15: 7-12.
[19]  Gliwicz ZM, Maszczyk P. Daphnia growth is hindered by chemical information on predation risk at high but not at low foodlevels. Oecologia, 2007, 150: 706-715.
[20]  ?luarczyk M. Food threshold for diapause in Daphnia under the threat of fish predation. Ecology, 2001, 82(4): 1089-1096.
[21]  Weber A, Vesela S. Optimising survival under predation: chemical cues modify curvature in Daphnia galeata. Aquatic Ecology,2002, 36: 519-527.
[22]  Spaak P, Boersma M. Tail spine length in the Daphnia galeata complex: costs and benefits of induction by fish. AquaticEcology, 1997, 31: 89-98.
[23]  Riccardi N, Giussani G, Lagorio L. Morphological variation and life history changes of a Daphnia hyaline population exposedto Chaoborus flavicans larvae predation (L. Candia, Northern Italy). Journal of Limnology, 2002, 61(1): 41-48.
[24]  Kolar CS, Wahl DH. Daphnia morphology deters fish predators. Oecologia, 1998, 116: 556-564.
[25]  Caramujo MJ, Boavida MJ. Induction and costs of tail spine elongation in Daphnia hyaline×galeata: reduction of susceptibilityto copepod predation. Freshwater Biology, 2000, 45: 413-423.
[26]  Laforsch C, Tollrian R. Embryological aspects of inducible morphological defenses in Daphnia. Journal of Morphology, 2004,262: 701-707.
[27]  Weber A, van Noordwijk A. Swimming behaviour of Daphnia clones: differentiation through predator infochemicals. Journal ofPlankton Research, 2002, 24: 1335-1348.
[28]  Szulkin M, Dawidowicz P, Dodson SI. Behavioural uniformity as a response to cues of predation risk. Animal Behaviour, 2006,71: 1013-1019.
[29]  De Meester L, Cousyn C. The change in phototactic behaviour of a Daphnia magna clone in the presence of fish kairomones:the effect of exposure time. Hydrobiologia, 1997, 360: 169-175.
[30]  Michels E, De Meester L. Inter-clonal variation in phototactic behaviour and key life-history traits in a metapopulation of thecyclical parthenogen Daphnia ambigua: the effect of fish kairomones. Hydrobiologia, 2004, 522: 221-233.
[31]  Kleiven OT, Larsson P, Hob?k A. Direct distributional response in Daphnia pulex to a predator kairomone. Journal of PlanktonResearch, 1996, 18(8): 1341-1348.
[32]  Jeschke JM, Tollrian R. Prey swarming: which predators become confused and why? Animal Behaviour, 2007, 74: 387-393.
[33]  Bollens SM, Frost BW. Diel vertical migration in zooplankton: rapid individual response to predators. Journal of PlanktonResearch, 1991, 13: 1359-1365.
[34]  Burks BL, Lodge DM, Jeppesen E et al. Diel horizontal migration of zooplankton: costs and benefits of inhabiting the littoral.Freshwater Biology, 2002, 47: 343-365.
[35]  Van Gool E, Ringelberg J. Light-induced migration behaviour of Daphnia modified by food and predator kairomones. AnimalBehaviour, 1998, 56: 741-747.
[36]  Loose CJ, Dawidowicz P. Trade-offs in diel vertical migration by zooplankton: the costs of predator avoidance. Ecology, 1994,75: 2255-2263.
[37]  Beklioglu M, Gozen AG, Yildirim F et al. Impact of food concentration on diel vertical migration behaviour of Daphnia pulexunder fish predation risk. Hydrobiologia, 2008, 614: 321-327.
[38]  Abrams PA, Rowe L. The effects of predation on the age and size of maturity of prey. Evolution, 1996, 50: 1052-1061.
[39]  Beckerman AP, Wieski K, Baird DJ. Behavioural versus physiological mediation of life history under predation risk. Oecologia,2007, 152: 335-343.
[40]  Stibor H, Machá?ek J. The influence of fish-exuded chemical signals on the carbon budget of Daphnia. Limnology andOceanography, 1998, 43(5): 997-1000.
[41]  Pijanowska J, Kloc M. Daphnia response to predation threat involves heat-shock proteins and the action and tubulincytoskeleton. Genesis, 2004, 38: 81-86.
[42]  Stibor H. The role of yolk protein dynamics and predator kairomones for the life history of Daphnia Magna. Ecology, 2002, 83:362-369.
[43]  ?luarczyk M, Rygielska E. Fish faeces as the primary source of chemical cues inducing fish avoidance diapause in Daphniamagna. Hydrobiologia, 2004, 526: 231-234.
[44]  Cousyn C, De Meester L, Colbourne JK et al. Rapid, local adaptation of zooplankton behavior to changes in predation pressurein the absence of neutral genetic changes. PNAs, 2001, 98(11): 6256-6260.
[45]  Lampert W. The adaptive significance of diel vertical migration of zooplankton. Functional Ecology, 1989, 3: 21-27.
[46]  Winder M, Boersma M, Spaak P. On the cost of vertical migration: are feeding conditions really worse at greater depths?Freshwater Biology, 2003, 48: 383-393.
[47]  Pohnert G, Steinke M, Tollrian R. Chemical cues, defence metabolites and the shaping of pelagic interspecific interactions.Trends in Ecology and Evolution, 2007, 22(4): 198-204.
[48]  Hoverman JT, Auld JR, Relyea RA. Putting prey back together again: integrating predator-induced behavior, morphology, andlife history. Oecologia, 2005, 144: 481-491.
[49]  Lass S, Spaak P. Temperature effects on chemical signaling in a predator-prey system. Freshwater Biology, 2003, 48: 669-677.
[50]  Reede T. Effects of neonate size and food concentration on the life history responses of a clone of the hybrid Daphniahyaline×galeata to fish kairomones. Freshwater Biology, 1997, 37: 389-396.
[51]  Sakwińska O. Response to fish kairomones in Daphnia galeata life history traits relies on shift to earlier instar at maturation.Oecologia, 2002, 131: 409-417.
[52]  ?luarczyk M. Predator-induced diapause in Daphnia. Ecology, 1995, 76(3): 1008-1013.
[53]  Reznick D, Bryant MJ, Bashey F. r-and K- selection revisited: the role of population regulation in life-history evolution.Ecology, 2002, 83: 1509-1520.
[54]  更多...
[55]  Repka S, Walls M. Variation in the neonate size of Daphnia pulex: the effects of predator exposure and clonal origin. AquaticEcology, 1998, 32: 203-209.
[56]  Pijanowska J, Kowalczewski A. Predators can induce swarming behaviour and locomotory responses in Daphnia. FreshwaterBiology, 1997, 37: 649-656.
[57]  Weber A, Declerck S. Phenotypic plasticity of Daphnia life history traits in response to predator kairomones: genetic variabilityand evolutionary potential. Hydrobiologia, 1997, 360: 89-99.
[58]  Parejko K. Embryology of Chaoborus-induced spines in Daphnia pulex. Hydrobiologia, 1992, 231: 77-84.
[59]  ?luarczyk M. Predator-induced diapause in Daphnia magna may require two chemical cues. Oecologia, 1999, 119: 159-165.
[60]  Pijanowsk J, Stolpe G. Summer diapause in Daphnia as a reaction to the presence of fish. Journal of Plankton Research, 1996,18: 1407-1412.
[61]  Reede T. Life history shifts in responses to different levels of fish kairomones in Daphnia. Journal of Plankton Research, 1995,17: 1661-1667.
[62]  Sakwińska O. Plasticity of Daphnia magna life history traits in response to temperature and information about a predator.Freshwater Biology, 1998, 39: 681-687.
[63]  Tollrian R. Predator-induced helmet formation in Daphnia cucullata (Stars). Archiv für Hydrobiologie, 1990, 119: 191-196.
[64]  Repka S, Pihlajamaa K. Predator-induced phenotypic plasticity in Daphnia pulex: uncoupling morphological defenses and lifehistory shifts. Hydrobiologia, 1996, 339: 67-71.
[65]  Mirza RS, Pyle GG. Waterborne metals impair inducible defences in Daphnia pulex: morphology, life-history traits andencounters with predators. Freshwater Biology, 2008, in press.
[66]  Tollrian R, Heibl C. Phenotypic plasticity in pigmentation in Daphnia induced by UV radiation and fish kairomones. FunctionalEcology, 2004, 18: 497-502.
[67]  Tanner GJ, Branstrator DK. Generational and dual-species exposures to invertebrate predators influence relative head size inDaphnia mendotae. Journal of Plankton Research, 2006, 28(8): 793-802.
[68]  Gélinas M, Pinel-Alloul B, ?lusarczyk M. Formation of morphological defences in response to YOY perch and invertebratepredation in two Daphnia species coexisting in a mesotrophic lake. Hydrobiologia, 2007, 594: 175-185.
[69]  Van Gool E, Ringelberg J. Relationship between fish kairomone concentration ina lake and phototactic swimming by Daphnia.Journal of Plankton Research, 2002, 24(7): 713-721.
[70]  Pauwels K, Stoks R, De Meester L. Coping with predator stress: interclonal differences in induction of heat-shock proteins inthe water flea Daphnia magna. Journal of Evolutionary Biology, 2005, 18: 867-872.
[71]  Stibor H, Navarra M. Constraints on the plasticity of Daphnia magna influenced by fish-kairomones. Functional Ecology, 2000,14: 455-459.
[72]  Doks?ter A, Vijverberg J. The effects of food and temperature regimes on life-history responses to fish kairomones in Daphniahyalina×galeata. Hydrobiologia, 2001, 442: 207-214.
[73]  Boeing WJ, Ramcharan CW, Riessen HP. Multiple predator defence strategies in Daphnia pulex and their relation to nativehabitat. Journal of Plankton Research, 2006, 28(6): 571-584.
[74]  Barry MJ. Effects of endosulfan on Chaoborus-induced life –history shifts and morphological defenses in Daphnia pulex.Journal of Plankton Research, 2000, 22(9): 1705-1718.
[75]  Beklioglu M, Telli M, Gozen AG. Fish and mucus-dwelling bacteria interact to produce a kairomone that induces diel verticalmigration in Daphnia. Freshwater Biology, 2006, 51: 2200-2206.
[76]  Stabell OB, Ogbebo F, Primicerio R. Inducible defences in Daphnia depend on latent alarm signals from conspecific preyactivated in predators. Chemical Senses, 2003, 28: 141-153.
[77]  Tollrian R, von Elert E. Enrichment and purification of Chaoborus kairomone from water: Further steps toward its chemicalcharacterization. Limnology and Oceanography, 1994, 39: 788-796.
[78]  Von Elert E, Loose CJ. Predator-induced diel vertical migration in Daphnia: Enrichment and preliminary chemicalcharacterization of a kairomone. Journal of Chemical Ecology, 1996, 22(5): 885-895.
[79]  Noonburg EG, Nisbet RM. Behavioural and physiological responses to food availability and predation risk. EvolutionaryEcology Research, 2005, 7: 89-104.
[80]  Rinke K, Hülamann S, Mooij WM. Energetic costs, underlying resource allocation patterns, and adaptive value ofpredator-induced life-history shifts. Oikos, 2008, 117: 273-285.
[81]  Flik BJG, Vijverberg J. Contrasting migration behaviour of Daphnia pulicaria and D. galeata×hyalina, in avoidance ofpredation by 0 + perch (Perca fluviatilis). Hydrobiologia, 2003, 491: 289-299.
[82]  Dawidowicz P, Wielanier M. Costs of predator avoidance reduce competitive ability of Daphnia. Hydrobiologia, 2004, 562:165-169.
[83]  高乐旋, 陈家宽, 杨 继. 表型可塑性变异的生态-发育机制及其进化意义. 植物分类学报, 2008, 46(4): 441-451.
[84]  Bernot RJ, Dodds WK, Quist MC et al. Temperature and kairomone induced life history plasticity in coexisting Daphnia.Aquatic Ecology, 2006, 40: 361-372.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133