全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
湖泊科学  2009 

137Cs质量平衡法测算青海湖现代沉积速率的尝试

DOI: 10.18307/2009.0612

Keywords: 现代沉积速率,137Cs质量平衡法,青海湖

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文是137Cs质量平衡法测算青海湖现代沉积速率的尝试.青海湖和其他低沉积速率湖泊沉积物剖面中,深度数cm处的137Cs蓄积峰,也可能是沉降到底泥表面的137Cs尘埃,以扩散和迁移的方式向下入渗形成.因此,将沉积剖面中的137Cs蓄积峰解释为1963年的沉积,并据此计算沉积速率,未必合理.青海湖湖滨草地测得的2005年137Cs本底值为117.7mBq/cm2.湖泊中部海心山到东南部渔场一线的6个孔的137Cs面积活度介于92.9-325.0mBq/cm2,其中青海湖东南部两个孔的137Cs面积活度较高,分别为本底值的155%和270%;湖泊中部4个孔的137Cs面积活度略高于或低于本底值.显然,湖泊东南部有明显沉积发生,特别是位于江西沟冲积扇前缘水下部分的QHH02孔,沉积强烈,水深也最小;湖泊中部沉积轻微.根据表层底泥样品的137Cs浓度,入湖河流泥沙的137Cs浓度和流域内草地表层土壤137Cs浓度的分析,初步确定C=30mBq/g,为1963年以来青海湖沉积泥沙的平均137Cs浓度.利用137Cs质量平衡模型求得的湖泊中部的平均沉积速率为0.020cm/a,和根据布哈河输沙模数求算出的青海湖平均沉积速率0.018cm/a吻合,远低于已报导的断代法测定的青海湖沉积速率.湖泊东南部的沉积速率大于湖泊中部,QHH02孔的沉积速率高达0.229cm/a,是已报导的青海湖沉积速率的两倍.

References

[1]  Zapata F. Handbook for the assessment of soil erosion and sedimentation using environmental radionuclides. Dordrecht, Boston,London: Kluwer Academic Publisher, 2002: 111-164.
[2]  Walling DE, He Qingping. Interpretation of caesium-137 profiles in lacustrine and other sediments: the role ofcatchment-derived inputs. Hydrobiologia, 1992, 235/236(1): 219-230.
[3]  张信宝. 有关湖泊沉积137Cs 深度分布资料解译的探讨. 山地学报, 2005, 23(3): 294-299.
[4]  沈 吉, 张恩楼, 夏威岚. 青海湖近千年来气候环境变化的湖泊沉积记录. 第四纪研究, 2001, 21(6): 508-513.
[5]  张恩楼, 沈 吉, 王苏民等. 青海湖近900年来气候环境演化的湖泊沉积记录. 湖泊科学, 2002, 14(1): 32-38.
[6]  Sholkovitz ER, Mann DR. The powerwater chemistry of 239,240 Pu and137Cs in sediments of Buzzards Bay, Massachusetts.Geochimica Cosmaochimica Acta, 1984, 48: 1107-1114.
[7]  Brunskill GJ, Ludlam SD, Peng TH. Fayetteville Green Lake, N.Y., U.S.A. VII. Mass balance for 137Cs in water, varved andnon-varved sediment. Chemical Geology, 1984, 44: 101-117.
[8]  曾 奕, 张信宝, 周卫健等. 青海湖表层底泥中放射性同位素137Cs 的来源. 湖泊科学, 2007, 19(5): 516-521.
[9]  Zhang Xinbao, Walling DE, Feng Mingyi et al. 210 Pb ex depth distribution in soil and calibration models for assessment of soilerosion rates from 210 Pb ex measurements. Chinese Science Bulletin, 2003, 48(8): 813-818.
[10]  伏介雄, 张信宝, 齐永青等. 无侵蚀非农耕地土壤 137Cs深度分布入渗过程模型. 核技术, 2006, 29(3): 1-5.
[11]  Ritchie JC, McHenry JR, Gill AC. Dating recent reservoir sediments. Limnology and Oceanography, 1973, 18: 254-263.
[12]  万国江, Santschi PH, Sturm M 等. 放射性核素和纹理纪念对比研究瑞士格莱芬湖近代沉积速率. 地球化学, 1986, 3:259-270.
[13]  He Q, Walling DE, Owens PN. Interpreting the 137Cs profiles observed in several small lakes and reservoirs in southern England.Chemical Geology, 1996, 129: 1l5-131.
[14]  Henderson ACG, Holmes JA, Zhang JW et al. A carbon-and oxygen-isotope record of recent environmental change from LakeQinghai, NE Tibetan Plateau. Chinese Science Bulletin, 2003, 48: 1463-1468.
[15]  Xu Hai, Ai Li, Tan Liangcheng et al. Geochronology of a surface core in the northern basin of Lake QingHai: Evidence from210 Pb and 137Cs radionuclides. Chinese Journal of Geochemistry, 2006, 25(4): 301-306.
[16]  Davis RB, Hess CT, Norton SA et al. 137Cs and 210 Pb dating of sediments from soft-water lakes in New England (U.S.A) andScandinavia, a failure of 137Cs dating. Chemical Geology, 1984, 44: 151-185.
[17]  Walling DE, He Q. Towards improved interpretation of caesium-137 profile in lake sediment. In: McManus J, Duck R eds.Geomorphology and sedimentology of sedimentology of lakes and reservoirs. Chichester: Wiley, 1993: 31-53.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133