全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
湖泊科学  2009 

西藏纳木错表层沉积物中正构烷烃的来源与空间分布特征

DOI: 10.18307/2009.0507

Keywords: 表层沉积物,正构烷烃,空间分布,纳木错,青藏高原

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过测定纳木错现代植物和表层沉积物样品中的正构烷烃,结合主成分分析方法,明确了表层沉积物中烷烃的主要来源,并初步分析了它们在湖泊中的空间分布特征.研究结果显示,沉水植物所含烷烃以n-C21-C25为主,具有n-C23的峰值;陆生植物主要含n-C27-C33烷烃,具有n-C29或n-C31的峰值;但垫状点地梅(Androsacetapete)和香柏(Sabinapingii)的主峰碳却是n-C33烷烃,这在以往研究中鲜有报道.在纳木错表层沉积物中,正构烷烃具有典型的n-C31和n-C23双峰分布形式,来源于低等菌藻类、沉水植物以及陆生植物.其中碳数小于C20的短链烷烃主要来源于低等菌藻类,其空间分布均一,由低等菌藻类的浮游生活型所决定;长链烷烃主要来源于高等植物,含量从滨岸到湖中心逐渐减少,这与其在运移和沉积过程中受微生物的持续降解作用有关.此外,来源于陆生植物的n-C27-C33烷烃因河流汇水面积和流量不同而存在空间差异,这值得重视和进一步研究.

References

[1]  Meyers PA, Ishiwatari R. Lacustrine organic geochemistry—an overview of indicators of organic matter sources and diagenesisin lake sediments. Org Geochem, 1993, 20(7): 867-900.
[2]  Zhou WJ, Xie SC, Meyers PA et al. Reconstruction of late glacial and Holocene climate evolution in southern China fromgeolipids and pollen in the Dingnan peat sequence. Org Geochem, 2005, 36(9): 1272-1284.
[3]  Xie SC, Yao TD, Kang SC et al. Geochemical analyses of a Himalayan snowpit profile: implications for atmospheric pollutionand climate. Org Geochem, 2000, 31: 15-23.
[4]  朱立平, 鞠建廷, 王君波等. 湖芯沉积物揭示的莫次冰消开始时期普莫雍错湖区环境变化. 第四纪研究, 2006, 26(5):772-780.
[5]  Lin X, Zhu LP, Wang Y et al. Environmental changes reflected by n-alkanes of lake core in Nam Co on the Tibetan Plateausince 8.4 kaB.P. Chin Sci Bull, 2008, 53(19): 3051-3057.
[6]  夏忠欢, 徐柏青, Mügler I 等. 青藏高原湖泊表层沉积物中陆源正构烷烃氢同位素比值的气候意义. 湖泊科学, 2008,20(6): 695-704.
[7]  Lamoureux S. Spatial and interannual variations in sedimentation patterns recorded in nonglacial varved sediments from theCanadian High Arctic. J Paleolimn, 1999, 21: 73-84.
[8]  王君波, 朱立平, Daut G 等. 西藏纳木错水深分布及现代湖沼学特征初步分析. 湖泊科学, 2009, 21(1): 128-134.
[9]  宗 浩, 王成善, 黄川友等. 纳木错流域自然生态特征与生物资源保护研究. 成都理工大学学报(自然科学版), 2004,31(5): 551-557.
[10]  Cranwell PA. Chain-length distribution of n-alkanes from lake sediments in relation to post-glacial environmental change.Freshw Biol, 1973, 3: 259-265.
[11]  Yamamoto K, Kurata Y, Takayanagi Y et al. Latitudinal change of normal paraffin composition in the northwest Pacificsediments. Marine Geol, 2003, 196: 157-170.
[12]  Shepherd T, Robertson GW, Griffiths DW et al. Effects of environment on the composition of epicuticular wax from kale andswede. Phytochem, 1995, 40: 407-417.
[13]  Giese BN. Effects of light and temperature on the composition of epicuticular wax of barley leaves. Phytochem, 1975, 14:921-929.
[14]  袁 军, 高吉喜, 吕宪国等. 纳木错湿地资源评价及保护与合理利用对策. 资源科学, 2002, 24(2): 29-34.
[15]  Schefu? E, Ratmeyer V, Stuut JBW et al. Carbon isotope analysis of n-alkanes in dust from the lower atmosphere over thecentral eastern Atlantic. Geochimt Cosmochim Acta, 2003, 67(10): 1757-1767.
[16]  Cranwell PA, Eglinton G, Robinson N. Lipids of aquatic organisms as potential contributors to lacustrine sediments-Ⅱ. OrgGeochem, 1987, 11(6): 513-527.
[17]  吴艳红, 朱立平, 叶庆华等. 纳木错流域近 30 年来湖泊—冰川变化对气候的响应. 地理学报, 2007, 62(3): 301-311.
[18]  Meyers PA. Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from theLaurentian Greak Lakes. Org Geochem, 2003, 34(2): 261-289.
[19]  Ratnayake NP, Suzuki N, Okada M et al. The variations of stable carbon isotope ratio of land plant-derived n-alkanes indeep-sea sediments from the Bering Sea and the North Pacific Ocean during the last 250,000 years. Chem Geol, 2006, 228(4):197-208.
[20]  Xie SC, Evershed RP. Peat molecular fossils recording paleoclimatic change and organism replacement. Chin Sci Bull, 2001,46(20): 1749-1752.
[21]  Mügler I, Sachse D, Werner M et al. Effect of lake evaporation on δD values of lacustrine n-alkanes: a comparison of Nam Co(Tibetan Plateau) and Holzmaar (Germany). Org Geochem, 2008, 39: 711-729.
[22]  郑艳红, 周卫建, 谢树成. 若尔盖高原全新世气候序列的类脂分子化石记录. 第四纪研究, 2007, 27(1): 108-113.
[23]  Gilbert R. Spatially irregular sedimentation in a small, morphologically complex lake: implications for paleoenvironmentalstudies. J Paleolimn, 2003, 29: 209-220.
[24]  关志华, 陈传友, 区裕雄等. 西藏河流与湖泊. 北京: 科学出版社, 1984: 115-215.
[25]  王 东. 青藏高原水生植物地理研究[博士学位论文]. 武汉: 武汉大学研究生院, 2003.
[26]  Ficken KJ, Li B, Swain DL et al. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquaticmacrophytes. Org Geochem, 2000, 31(7-8): 745-749.
[27]  更多...
[28]  Schwark L, Zink K, Lechterbeck J. Reconstruction of postglacial to early Holocene vegetation history in terrestrial CentralEurope via cuticular lipid biomarkers and pollen records from lake sediments. Geology, 2002, 30(5): 463-466.
[29]  Shepherd T, Griffiths DW. The effects of stress on plant cuticular waxes. N Phytol, 2006, 171: 469-499.
[30]  吴聿明. 环境统计学. 北京: 中国环境科学出版社, 1991: 217-315.
[31]  Youngblood WW, Blumer M, Guillard RL et al. Saturated and unsaturated hydrocarbons in marine benthic algae. Marine Geol,1971, 8: 190-201.
[32]  Schefu? E, Versteegh GJM, Jansen JHF et al. Lipid biomarkers as major source and preservation indicators in SE Atlanticsurface sediments. Deep-sea Ⅰ, 2004, 51: 1199-1228.
[33]  Meyers PA, Eadie BJ. Source, degradation, and resynthesis of the organic matter on sinking particles in Lake Michigan. OrgGeochem, 1993, 20(1): 47-56.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133