全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
湖泊科学  2009 

湖泊沉积物-水界面氧气交换速率的测定及影响因素

DOI: 10.18307/2009.0404

Keywords: 沉积物-水界面,界面氧气交换,微溶解氧电极,太湖,南四湖

Full-Text   Cite this paper   Add to My Lib

Abstract:

水流启动-停止法可有效获取体积式氧气交换速率(O2(t)),且该速率与沉积物柱样培养法获得的总氧气交换速率(TOE)之间具显著相关性;与由一维溶解氧剖面计算获得的氧气在扩散界面层中的扩散速率和氧气在沉积物中的扩散速率相比,O2(t)与TOE不仅能代表氧气扩散速率,而且还包括沉积物中生物呼吸以及生物扰动引起的界面氧气交换速率信息.此外,通过比较太湖及南四湖多位点不同沉积物性质条件下界面氧气交换速率,结果表明界面氧气交换速率在空间尺度上的差异性,除与生物因素有关外,还与沉积物有机物质含量显著相关.

References

[1]  Nixon SW. Coastal marine eutrophication: A definition, social causes, and future concerns. Ophelia, 1995, 41: 199-219.
[2]  J?rgensen BB, Marais DJD. The diffusive boundary layer of sediments: oxygen microgradients over a microbial mat. Limnology and Oceanography, 1990, 35(6): 1343-1355.
[3]  Klimant I, Kühl M, Glud RN et al. Optical measurement of oxygen and temperature in microscale: strategies and biological applications. Sensors & Actuators: B. Chemical, 1997, 38(1-3): 29-37.
[4]  Berg P, Risgaard-Petersen N, Rysgaard S. Interpretation of measured concentration profiles in sediment pore water. Limnology and Oceanography, 1998, 43(7): 1500-1510.
[5]  Polerecky L, Franke U, Werner U et al. High spatial resolution measurement of oxygen consumption rates in permeable sediments. Limnology and Oceanography Methods, 2005, 3: 75-85.
[6]  Coles SL, Jokiel PL. Effects of temperature on photosynthesis and respiration in hermatypic corals. Marine Biology, 1977, 43(3): 209-216.
[7]  Hancke K, Glud RN. Temperature effects on respiration and photosynthesis in three diatom-dominated benthic communities. Aquatic Microbial Ecology, 2004, 37(3): 265-281.
[8]  J?rgensen BB, Glud RN, Holby O. Oxygen distribution and bioirrigation in Arctic fjord sediments (Svalbard, Barents Sea). Marine Ecology Progress Series, 2005, 292: 85-95.
[9]  更多...
[10]  Lohrer AM, Thrush SF, Gibbs MM. Bioturbators enhance ecosystem function through complex biogeochemical interactions. Nature, 2004, 431(7012): 1092-1095.
[11]  Aller RC. Benthic fauna and biogeochemical processes in marine sediments: the role of burrow structures. John Wiley and Sons Ltd, 1988.
[12]  Forster S, Graf G. Impact of irrigation on oxygen flux into the sediment: intermittent pumping by Callianassa subterranea and “piston-pumping” by Lanice conchilega. Marine Biology, 1995, 123(2): 335-346.
[13]  J?rgensen BB, Revsbech NP. Diffusive boundary layers and the oxygen uptake of sediments and detritus. Limnology and Oceanography, 1985, 30(1): 111-122.
[14]  Qu W, Morrison RJ, West RJ. Inorganic nutrient and oxygen fluxes across the sediment-water interface in the inshore macrophyte areas of a shallow estuary (Lake Illawarra, Australia). Hydrobiologia, 2003, 492(1): 119-127.
[15]  Risgaard-Petersen N, Rysgaard S, Nielsen LP et al. Diurnal variation of denitrification and nitrification in sediments colonized by benthic microphytes. Limnology and Oceanography, 1994, 39(3): 573-579.
[16]  Gelda RK, Auer MT, Effler SW. Determination of sediment oxygen demand by direct measurement and by inference from reduced species accumulation. Marine and Freshwater Research, 1995, 46: 81-88.
[17]  Andersson E, Helder W. Comparison of oxygen microgradients, oxygen flux rates and electron transport system activity in coastal marine sediments. Marine Ecology Progress Series, 1987, 37: 259-264.
[18]  Grenz C, Denis L, Boucher G et al. Spatial variability in sediment oxygen consumption under winter conditions in a lagoonal system in New Caledonia (South Pacific). Journal of Experimental Marine Biology and Ecology, 2003, 285: 33-47.
[19]  Rabouille C, Denis L, Dedieu K et al. Oxygen demand in coastal marine sediments: comparing in situ microelectrodes and laboratory core incubations. Journal of Experimental Marine Biology and Ecology, 2003, 285-286: 49-69.
[20]  Fenchel T, Glud RN. Benthic primary production and O2-CO2 dynamics in a shallow water sediment: Spatial and temporal heterogeneity. Ophelia, 2000, 53(3): 159-171.
[21]  Dedieu K, Rabouille C, Thouzeau G et al. Benthic O2 distribution and dynamics in a Mediterranean lagoon (Thau, France): An in situ microelectrode study. Estuarine, Coastal and Shelf Science, 2007, 72(3): 393-405.
[22]  Andersson E, Brunberg AK. Net autotrophy in an oligotrophic lake rich in dissolved organic carbon and with high benthic primary production. Aquatic Microbial Ecology, 2006, 43(1): 1-10.
[23]  Kim KH, Kim D. Seasonal and spatial variability of sediment oxygen fluxes in the Beobsan intertidal flat of Taean Bay, mid-western Korean Peninsula. Geosciences Journal, 2007, 11(4): 323-329.
[24]  Banse K. Mass-scaled rates of respiration and intrinsic growth in very small invertebrates. Marine Ecology Progress Series, 1982, 9(3): 281-297.
[25]  Archer D, Devol A. Benthic oxygen fluxes on the Washington shelf and slope: A comparison of in situ microelectrode and chamber flux measurements. Limnology and Oceanography, 1992, 37(3): 614-629.
[26]  Reimers CE, Smith Jr KL. Reconciling measured and predicted fluxes of oxygen across the deep sea sediment-water interface. Limnology and Oceanography, 1986, 31(2): 305-318.
[27]  Revsbech NP, J?rgensen BB. Microelectrodes: their use in microbial ecology. Advances in Microbial Ecology, 1986, 9: 293-352.
[28]  Roy H, Huttel M, J?rgensen BB. The role of small-scale sediment topography for oxygen flux across the diffusive boundary layer. Limnology and Oceanography, 2002, 47(3): 837-847.
[29]  Rasmussen H, J?rgensen BB. Microelectrode studies of seasonal oxygen uptake in a coastal sediment: Role of molecular diffusion. Marine Ecology Progress Series, 1992, 81(3): 289-303.
[30]  Wenzh?er F, Glud RN. Small-scale spatial and temporal variability in coastal benthic O2 dynamics: Effects of fauna activity. Limnology and Oceanography, 2004, 49(5): 1471-1481.
[31]  Lansard B, Rabouille C, Massias D. Variability in benthic oxygen fluxes during the winter-spring transition in coastal sediments: an estimation by in situ micro-electrodes and laboratory mini-electrodes. Oceanologica Acta, 2003, 26(3): 269-279.
[32]  Gundersen JK, J?rgensen BB. Microstructure of diffusive boundary layers and the oxygen uptake of the sea floor. Nature, 1990, 345(6276): 604-607.
[33]  de Beer D, Wenzhofer F, Ferdelman TG et al. Transport and mineralization rates in North Sea sandy intertidal sediments, Sylt-R?m? Basin, Wadden Sea. Limnology and Oceanography, 2005, 50(1): 113-127.
[34]  Glud RN, Tengberg A, Kühl M et al. An in situ instrument for planar O2 optode measurements at benthic interfaces. Limnology and Oceanography, 2001, 46(8): 2073-2080.
[35]  Holst G, Kohls O, Klimant I et al. A modular luminescence lifetime imaging system for mapping oxygen distribution in biological samples. Sensors & Actuators B: Chemical, 1998, 51(1-3): 163-170.
[36]  Berg P, R?y H, Janssen F et al. Oxygen uptake by aquatic sediments measured with a novel non-invasive eddy-correlation technique. Marine Ecology Progress Series, 2003, 261: 75-83.
[37]  Kuwae T, Kamio K, Inoue T et al. Oxygen exchange flux between sediment and water in an intertidal sandflat, measured in situ by the eddy-correlation method. Marine Ecology Progress Series, 2006, 307: 59-68.
[38]  Otubu JE, Hunter JV, Francisco KL et al. Temperature effects on Tubificid worms and their relation to sediment oxygen demand. Journal of Environmental Science and Health, Part A, 2006, 41(8): 1607-1613.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133