全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
湖泊科学  2009 

滇池的富营养化过程:来自结合态脂肪酸C16:0δ13C的证据

DOI: 10.18307/2009.0402

Keywords: 脂肪酸,δ13C,结合态类脂物,富营养化,湖相沉积物,滇池

Full-Text   Cite this paper   Add to My Lib

Abstract:

以云贵高原浅水湖泊滇池作为研究对象,在对湖心一个63cm柱状沉积物中δ13Corg、δ13N、C/N比值和TOC含量测定的基础上,以近现代沉积物有机质中结合态脂肪酸的组成及其单体碳同位素组成结果为主要的讨论对象,并与相应游离态脂肪酸的组成及碳同位素值进行了对比研究,探讨近二百年来滇池湖泊的富营养化过程.研究结果表明,沉积物中有机质基本参数变化按沉积深度可以划分成三个主要阶段,其中20cm至表层段,δ13N、TOC显著增大,与该时期湖泊富营养化密切相关.结合态脂肪酸总含量为38.5-209.6μg/g,游离态脂肪酸总含量为12.0-318.1μg/g,都在表层段20cm出现迅速增加的趋势;利用脂肪酸单体分子组合CPIA、∑C20-/∑C21+、TARFA、C18:1w7/C18:1w9、(i-C15:0+a-C15:0)/nC15:0比值的特征变化,表明其以内源的浮游生物和细菌输入为主,内源藻类的大量繁殖,导致湖泊富营养化加剧.相比游离态脂肪酸,滇池沉积物中的结合态脂肪酸具有较丰富的不饱和脂肪酸和正反异构脂肪酸,且具有较强的稳定性,能抵抗早期化学和生物降解作用的影响,具有重要的研究价值,将成为近年来研究的热点.结合态脂肪酸中C16:0的δ13C变化较好地记录了近几十年来湖泊富营养化过程的加剧,可作为反映湖泊重富营养化进程的一个重要指标.

References

[1]  杨一光, 杨桂华. 滇池自然地理概要. 云南大学学报(自然科学版), 1985, 7(增刊): 1-8.
[2]  段 毅, 崔民中, 罗斌杰等. 我国海洋沉降颗粒物质的有机地球化学研究—I: 有机质通量及烃类化合物和脂肪酸分布特征. 中国科学(D辑), 1997, 27(5): 442-446.
[3]  Krishnamurthy RV, Bhattacharya SK, Sheela K. Palaeoclimatic changes deduced from 13C/12C and C/N ratios of Karewa lake sediments. Nature, 1986, 323: 150-152.
[4]  Meyers PA, Shoji H. An organic carbon isotopic of glacial-postglacial change in atmospheric pCO2 in the sediments of Lake Biwa, Japan. Palaeogeogr Palaeoclimatol Palaeoecol, 1993, 105: 171-178.
[5]  Meyers PA. Organic geochemical proxies of paleoceanographic, paleolimnologic and paleoclimatic processes. Org Geochem, 1997, 27(5/6): 213-250.
[6]  Volkman JK, Johns RB, Gillan FT et al. Microbial lipids of an intertidal sediment-I. Fatty acids and hydrocarbons. Geochim Cosmochim Acta, 1980, 4(3): 1133-1143.
[7]  Wakeham SG, Hedges JI, Lee C et al. Compositions and transport of lipid biomarkers through the water column and surficial sediments of the equatorial Pacific Ocean. Deep-Sea Res II, 1997, 44: 2131-2162.
[8]  Kaneda T. Iso-and anteiso-fatty acids in bacteria: Biosynthesis, function, and taxonomic significance. Microbiol Rev, 1991, 55: 288-302.
[9]  Wu JL, Huang CM, Zeng HA et al. Sedimentary evidence for recent eutrophication in the northern basin of Lake Taihu, China: human impacts on a large shallow lake. J Paleolimnol, 2007, 38: 13-23.
[10]  李 原, 张 梅, 王若南. 滇池的水华蓝藻的时空变化. 云南大学学报(自然科学版), 2005, 27(3): 272-276.
[11]  Ahlgren G, Gustafsson IB, Boberg M. Fatty acids content and chemical composition of freshwater microalgae. J Phycol, 1992, 28: 37-50.
[12]  拓元蒙. 滇池富营养化现状、趋势及其综合防治对策. 云南环境科学, 2002, 21(1): 35-38.
[13]  Schelske CL, Hodell DA. Using carbon isotopes of bulk sedimentary organic matter to reconstruct the history of nutrient loading and eutrophication in Lake Erie. Limnol Oceanogr, 1995, 40: 918-929.
[14]  张振克, 王苏民. 中国湖泊沉积记录的环境演变—研究进展与展望. 地球科学进展, 1999, 14(4): 417-421.
[15]  Goossens H, Düren RR, de Leeuw JW et al. Lipids and their mode of occurrence in bacteria and sediment. II. Lipids in the sediment of a stratified, freshwater lake. Org Geochem, 1989, 14: 15-25.
[16]  Albaiges J, Algaba J, Grimalt et al. Extractable and bound neutral lipids in some lacustrine sediments. Org Geochem, 1984, 6: 223-236.
[17]  Abraham WR, Hesse C, Pelz O. Ratios of carbon isotopes in microbial lipids as an indicator of substrate usage. Applied and Environmental Microbiology, 1998, 64(11): 4202-4209.
[18]  林 琳, 吴敬禄. 太湖梅梁湾富营养化过程的同位素地球化学证据. 中国科学(D 辑), 2005, 35(增刊Ⅱ): 55-62.
[19]  Rosenmeier MF, Hodell DA, Brenner M et al. A 4000 year lacustrine record of environmental change in the southern Maya lowland, Peten, Guatemala. Quat Res, 2002, 57: 183-190.
[20]  Bernasconi SM, Barbieri A, Simona M. Carbon and nitrogen isotope variations in sedimenting organic matter in Lake Lugano. Limnol Oceanogr, 1997, 42: 1755-1765.
[21]  Herczeg LA, Smith KA, Dighton CJ. A 120 year record of changes in nitrogen and carbon cycling in Lake Alexandrina, South Australia:C:N, δ13C and δ15N in sediments. Appl Geochem, 2001, 16: 73-84.
[22]  濮培民, 王国祥, 李正魁等. 健康水生态系统的退化及其修复—理论、技术及应用. 湖泊科学, 2001, 13(3): 193-203.
[23]  Niggemann J, Schubert CJ. Fatty acid biogeochemistry of sediments from the Chilean coastal upwelling region: sources and diagenetic changes. Org Geochem, 2006, 37: 626-647.
[24]  Meyes PA, Silliman JE, Shaw TJ. Effects of turbiditic sedimentation on organic matter accumulation, sulfate reduction, and methane generation on the Iberia Abyssal Plain. Org Geochem, 1996, 25: 69-78.
[25]  Chuecas I, RiLey JP. Component fatty acids of the total lipids of some marine phytoplankton. Marine Biol, 1969, 49: 97-116.
[26]  Camacho-Ibar VF, Aveytua-Alcázar L, Carriquiry JD. Fatty acid reactivities in sediment cores from the northern Gulf of California. Org Geochem, 2003, 34: 425-439.
[27]  更多...
[28]  Wakeham SG, Beier JA, Clifford CH. Fatty acid and sterol biomarkers as indicators of particulate matter source and alteration processes in the Black Sea. Deep Sea Res, 1991, 38: 943-968.
[29]  Wu JL, Gagan MK, Jiang X et al. Sedimentary geochemical evidence for recent eutrophication of Lake Chenghai, Yunnan, China. J Paleolimnol, 2004, 32: 85-94.
[30]  Meyers PA. Applications of organic geochemistry to palelimnological reconstructions: a summary of example from the Laurentian Great Lakes. Org Geochem, 2003, 34: 261-289.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133