全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
湖泊科学  2009 

秋季太湖水下光场结构及其对水生态系统的影响

DOI: 10.18307/2009.0317

Keywords: 漫衰减系数,平均余弦,光合有效辐射,水生态系统

Full-Text   Cite this paper   Add to My Lib

Abstract:

水生态系统中光能的分配很大程度上决定了水生态系统的结构和功能,利用2007年11-12月太湖水体光学特性和组分浓度数据,对秋季太湖水下光场结构特征和水体组分光竞争能力的表征光学量(漫衰减系数、平均余弦)和影响因素(吸收系数比重)进行了分析研究.结果表明,秋季太湖水下辐照度呈现单峰分布,最高值为583nm左右;根据Kd可将黄质和非色素物质主导程度的强弱分为弱、较强、强三个等级;Kd(PAR)平均值为4.61±1.54m-1,水体真光层厚度平均值为1.11±0.35m;太湖水下光场的光能主要分布在青光和黄绿光波长范围内,约占总能量的60%,蓝光和红光波长范围内的能量约占30%,这样的光谱结构有利于铜绿微囊藻和斜生栅藻的生长.

References

[1]  Anderson TR. A spectrally averaged model of light penetration and photosynthesis. Limnol&Oceanogr, 1993, 38(7): 1403-1419.
[2]  Chami M, Shybanov EB, Churilova TY et al. Optical properties of the particles in the Crimea coastal waters(Black Sea). Journal of Geophysical Research, 2005, 110: 1020-1029.
[3]  Bannister TT. Model of the mean cosine of underwater radiance and estimation of underwater scalar irradiance. Limnol & Oceanogr, 1992, 37(4): 773-780.
[4]  Maffione RA, Jaffe JS. The average cosine due to an isotropic light source in the ocean. Journal of Geophysical Research, 1995, 100(7): 13179-13192.
[5]  黄二辉, 潘德炉, 李淑菁等. 水下剖面光谱原始数据异常值的判断方法. 海洋学研究, 2006, 24(1): 91-96.
[6]  陈宇炜, 陈开宁, 胡耀辉. 浮游植物叶绿素 a 测定的“热乙醇法”及其测定误差探讨. 湖泊科学, 2006, 18(5): 550-552.
[7]  Heinermann PH, Johnson L, Alii MA. The underwater photic environment of a small arctic lake. ARCTIC, 1990, 43(2): 129-136.
[8]  张运林, 秦伯强. 太湖水体光学衰减系数的分布及其变化特征. 水科学进展, 2003, 14(4): 447-453.
[9]  Gons HJ, Ebert J, Kromkamp J. Optical teledetection of the vertical attenuation coefficient for downward quantum irradiance of photosynthetically available radiation in turbid inland water. Aquatic Ecology, 1998, 31: 299-311.
[10]  更多...
[11]  Westberry TK, Siegel DA. Phytoplankton natural fluorescence variability in the Sargasso Sea. Deep-Sea Research, 2003, 50: 417-434.
[12]  武维华. 植物生理学(第 1 版). 北京: 科学出版社, 2003.
[13]  孙德勇, 李云梅, 乐成峰等. 太湖水体散射特性及其与悬浮物浓度关系模型. 环境科学, 2007, 28(12): 2688-2694.
[14]  Kishino M, Booth CR, Okami N. Underwater radiant energy absorbed by phytoplankton, detritus, dissolved organic matter and pure water. Limnol&Oceanogr, 1984, 29(2): 340-349.
[15]  Dubinsky Z, Berman T. Light utilization efficiencies of phytoplankton in Lake Kinneret (Sea of Galilee). Limnol & Oceanogr, 1976, 21: 226-230.
[16]  Jerlov NG. Optical oceanography. New York: Elsevier Scientific Publishing Company, 1976.
[17]  Nelson NB, Prkzelin BB, Bidigare RR. Phytoplankton light absorption and the package effect in California coastal waters. Mar Ecol Prog Ser, 1993, 94: 217-227.
[18]  Bricaud A, Morel A, Prieur L. Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains. Limnol & Oceanogr, 1981, 26(1): 43-53.
[19]  徐希孺. 遥感物理. 北京: 北京大学出版社, 2005.
[20]  Whitney LV. Transmission of solar energy and the scattering produced by suspension in lake water. Trans Wisc Acad Sci Arts Lett, 1938, 31: 201-221.
[21]  Mueller JL, Fargion GS, Zaneveld RV et al. Ocean optics protocols for satellite ocean color sensor validation. Revision 4.Volume IV. NASA, 2003.
[22]  Pope RM, Fry ES. Absorption spectrum (380-700nm) of pure water. II. Integrating cavity measurements. Applied Optical, 1997, 36: 8710-8723.
[23]  Kirk JTO. Light and photosynthesis is in aquatic ecosystem. Britain: Combridge University Press, 1994.
[24]  Huovinen PS, Penttol H, Soimasuo MR. Spectral attenuation of solar ultraviolet radiation in humic lake in Central Finland. Chemosphere, 2003, 51(3): 205-214.
[25]  郝建军, 康宗利. 植物生理学(第 1 版). 北京: 化学工业出版社, 2005.
[26]  Bowers DG, Mitchelon-jacob EG. Inherent optical properties of the irish sea determind from underwater irradiance measurement. Estuarine Coastal and Shelf Science, 1996, 43: 433-447.
[27]  Ulloa O, Sathyendranath S, Platt T. Effect of the particle-size distribution on the backscattering ratio in seawater. Applied Optical, 1994, 33(30): 7070-7077.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133