Siegel DA, Michaels AF. Quantification of non-algal light attenuation in the Sargasso Sea: implications for biogeochemistry and remote sensing. Deep Sea Res, 1996, 43: 321-345.
Garver SA, Siegel DA. Inherent optical property inversion of ocean colour spectra and its biogeochemical interpretation 1.Time series from the Sargasso Sea. J Geophys Res, 1997, 102: 18607-18625.
[4]
Hoge FE, Lyon PE. Satellite retrieval of inherent optical properties by linear matrix inversion of oceanic radiance models: an analysis of model and radiance measurement errors. J Geophys Res, 1996, 101: 16631-16648.
[5]
Lee ZP, Carder KL, Arnone R. Deriving inherent optical properties from water color: a multi-band quasi-analytical algorithm for optically deep waters. Appl Opt, 2002, 41: 5755-5772.
[6]
Thiria S, Meija C, Badran F et al. A neural network approach for modelling non-linear transfer functions: application for wind retrieval from space borne scatterometer data. J Geophys Res, 1993, 98: 22827-22841.
[7]
Schiller H, Doerffer R. Neural network for emulation of an inverse model-operational derivation of Case II water properties from MERIS data. Int J Remote Sens, 1999, 20: 1735-1746.
[8]
Zhang Tinglu, Fell Frank, Liu zhishen et al. Evaluating the performance of artificial neural network techniques for pigment retrieval from ocean colour in Case I waters. J Geophys Res, 2003, 108: 3286.
[9]
Doerffer R, Schiller H. The MERIS Case 2 water algorithm. Inte J Remote Sens, 2007, 28: 517.
[10]
Fargion GS, Mueller JL. Ocean optics protocols for satellite ocean colour sensor validation, Revision 2. NASA/TM-2000-209966. NASA Goddard Space Flight Center, Greenbelt, Maryland, 2000: 98.
[11]
Zhang Tinglu. Retrieval of oceanic constituents with artificial neural network based on radiative transfer simulations techniques [PhD thesis]. Institut fuer Weltraumwissenschaften, Freie Universitaet Berlin, Germany, 2003.
[12]
Babin M. Coastal surveillance through observation of ocean colour (COASTLOOC), Final Report, Project ENV4-CT96-0310, Laboratoire de Physique et Chimie Marines, Villefranche-sur-mer, France, 2000: 233.
[13]
Pope RM, Fry ES. Absorption spectrum(380-700)of pure water. II. Integrating cavity measurements. Appl Opt, 1997, 36: 8710-8722.
[14]
Bricaud A, Morel A, Babin M et al. Variations of light absorption by suspended particles with chlorophyll-a concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models. J Geophys Res, 1998, 103: 31033-31044.
[15]
Shimwell SJ, Wernand M. Ocean colour algorithm development, PMNS report, 1995, Netherlands Institute for Sea Research, Netherlands.
[16]
Falkowski PG. The role of phytoplankton photosynthesis in global biogeochemical cycles. Photosyn Res, 1994, 39: 235-258.
[17]
Mopper K, Zhou XL, Kieber RJ et al. Photochemical degradation of dissolved organic carbon and its impact on the oceanic carbon cycle. Nature, 1991, 353: 60-62.
[18]
Siegel DA, Maritorena S, Nelson NB et al. Global distribution and dynamics of coloured dissolved and detrital organic materials. J Geophys Res, 2002, 107: 3228-3242.
[19]
Moran MA, Zepp RG. Role of photo reactions in the formation of biologically labile compounds from dissolved organic matter, Limnol Oceanogr, 1997, 42: 1307-1316.
[20]
O\'Reilly JE, Maritorena S, Mitchell BG et al. Ocean colour chlorophyll algorithms for SeaWiFS. J Goephys Res, 1998, 103: 24937-24953.
[21]
Doerffer R, Fischer J. Concentrations of chlorophyll, suspended matter, and gelbstoff in case II waters derived from satellite coastal zone colour scanner data with inverse modelling methods. J Geophys Res, 1994, 99: 7457-7466.
[22]
Carder KL, Chen FR, Lee ZP et al. Semianalytic moderate resolution imaging spectrometer algorithms for chlorophyll and absorption with bio-optical domains based on nitrate-depletion temperatures. J Geophys Res, 1999, 104: 5403-5421.
[23]
Roesler CS, Perry MJ. In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance. J Geophys Res, 1995, 100: 279-294.
[24]
Lee ZP, Carder KL, Mobley CD et al. Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths and water properties by optimisation. Appl Opt, 1999, 38: 3831-3843.
[25]
Keiner LE, Brown CW. Estimating oceanic chlorophyll concentrations with neural networks. Int J Remote Sens, 1999, 20: 189-194.
[26]
Gross L, Thiria S, Frouin R et al. Artificial neural networks for modelling the transfer function between marine reflectance and phytoplankton pigment concentration. J Geophys Res, 2000, 105: 3483-3495.
[27]
更多...
[28]
Buckton D, O\'Mongain E, Danaher S. The use of neural networks for the estimation of oceanic constituents based on the MERIS instrument. Int J Remote Sens, 1999, 20: 1841-1851.
[29]
Mobley CD. Estimation of the remote-sensing reflectance from above-surface measurements. Appl Opt, 1999, 38: 7442-7455.
[30]
Fell F, Fischer J. Numerical simulation of the light field in the atmosphere-ocean system using the Matrix-Operator method. J Quant Spectrosc Radiat Transfer, 2001, 69: 351-388.
[31]
Morel A. Optical properties of pure water and pure sea water, in Optical Aspects of Oceanography. In: Jerlov NG, Nielsen ES eds. New York, USA: Academic Press, 1974: 1-24.
[32]
Zhang Tinglu, Frank F. An approach to improving the retrieval accuracy of oceanic constituents in Case II waters. Journal of Ocean University of China, 2004, 3(2): 220-224.