全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
湖泊科学  2009 

基于时间序列MODIS影像的鄱阳湖丰水期悬浮泥沙浓度反演及变化

DOI: 10.18307/2009.0219

Keywords: 鄱阳湖,MODIS,悬浮泥沙浓度,反演,变化分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

悬浮泥沙浓度是描述水质的重要参数之一,获得其在空间和时间上的分布信息对于理解、管理和保护湖泊生态系统是必要的.此研究旨在建立基于中分辨率成像光谱仪(MODIS)影像的鄱阳湖悬浮泥沙浓度反演模型,并利用建立的模型反演2000-2007年鄱阳湖丰水期的悬浮泥沙浓度,分析其在时间和空间上的变化特征并对引起这些变化的原因进行讨论.研究结果揭示:MODISTerra影像红波段与悬浮泥沙浓度具有显著的相关性(R2=0.92,s.e.=12.02mg/L,F=154.30,P<0.001),可以用于鄱阳湖丰水期悬浮泥沙浓度的反演;自2000-2007年间,鄱阳湖悬浮泥沙浓度呈明显的时间和空间分布特征,在南部水体悬浮泥沙浓度无明显变化,在北部呈增加趋势,而中部水体泥沙浓度波动较大;鄱阳湖北部的采砂活动是导致此区域悬浮泥沙浓度增加的主要原因,其与长江江水倒灌鄱阳湖共同作用引起鄱阳湖中部泥沙浓度的波动,抚河、信江和饶河输沙量的非显著变化也导致南部鄱阳湖水体悬浮泥沙浓度的非显著变化.

References

[1]  Jorgensen SE, Loffler H, Rast W et al. Lake and reservoir management, Volume 54 (Developments in Water Science). Elsevier Publishers, 2005.
[2]  Hu C, Chen Z, Clayton TD et al. Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: Initial results from Tampa Bay, FL. Remote Sensing of Environment, 2004, 93(3): 423-441.
[3]  Zhang Y, Pulliainen JT, Koponen SS et al. Water quality retrievals from combined Landsat TM data and ERS-2 SAR data in the Gulf of Finland. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(3): 622-629.
[4]  Davies-Colley RJ, Smith DG. Turbidity, suspended sediment, and water clarity: A review. Journal of the American Water Resources Association, 2001, 37(5): 1085-1101.
[5]  Cigizoglu HK, Kisi O. Methods to improve the neural network performance in suspended sediment estimation. Journal of Hydrology, 2006, 317(3-4): 221-238.
[6]  Kirk JTO. Light and photosynthesis in aquatic ecosystems. Combridge, Britian: Cambridge University Press, 1994.
[7]  Blom G, Duin EHSV, Lijklema L. Sediment resuspension and light conditions in some shallow Dutch lakes. Water Science and Technology, 1994, 30(10): 243-252.
[8]  Best EPH, Teeter AH, Nair SK. Modeling the impacts of suspended sediment concentration and current velocity on submersed vegetation in an Illinois River Pool, USA. In: APCRP Technical Notes Collection (ERDC TN-APCRP-EA-07), U.S. Army Engineer Research and Development Center, Vicksburg, MS.
[9]  Liu WC. Water column light attenuation estimation to simulate phytoplankton population in tidal estuary. Environmental Geology, 2005, 49(2): 280-292.
[10]  Keiner LE, Yan XH. A neural network model for estimating sea surface chlorophyll and sediments from Thematic Mapper Imagery. Remote Sensing of Environment, 1998, 66(2): 153-165.
[11]  Tyler AN, Svab E, Preston T et al. Remote sensing of the water quality of shallow lakes: A mixture modelling approach to quantifying phytoplankton in water characterized by high-suspended sediment. International Journal of Remote Sensing, 2006, 27(8): 1521-1537.
[12]  Ruhl CA, Schoellhamer DH, Stumpf RP et al. Combined use of remote sensing and continuous monitoring to analyse the variability of suspended-sediment concentrations in San Francisco Bay, California. Estuarine Coastal and Shelf Science, 2001, 53(6): 801-812.
[13]  Miller RL, McKee BA. Using MODIS Terra 250m imagery to map concentrations of total suspended matter in coastal waters. Remote Sensing of Environment, 2004, 93(1-2): 259-266.
[14]  Li R, Li J. Satellite remote sensing technology for lake water clarity monitoring: an overview. Environmental Informatics Archives, 2004, 2: 893-901.
[15]  更多...
[16]  Li RR, Kaufman YJ, Gao BC et al. Remote sensing of suspended sediments and shallow coastal waters. Geoscience and Remote Sensing, IEEE Transactions on, 2003, 41(3): 559-566.
[17]  张春桂, 张 星, 陈敏艳等. 福建近岸海域悬浮泥沙浓度遥感定量监测研究. 自然资源学报, 2008, 23(1): 150-160.
[18]  刘良明, 张红梅. 基于 MODIS 数据的悬浮泥沙定量遥感方法. 国土资源遥感, 2006, 2: 42-45.
[19]  崔丽娟, 张曼胤, 王义飞等. 鄱阳湖湿地环境质量分异及风险表征. 东北师大学报(自然科学版), 2006, 38(1): 114-120.
[20]  钟业喜, 陈 姗. 采砂对鄱阳湖鱼类的影响研究. 江西水产科技, 2005, 1: 15-18.
[21]  Wu G, De Leeuw J, Skidmore AK et al. Concurrent monitoring of vessels and water turbidity enhances the strength of evidence in remotely sensed dredging impact assessment. Water Research, 2007, 41(15): 3271-3280.
[22]  胡细英, 熊小英. 鄱阳湖水位特征与湿地生态保护. 江西林业科技, 2002, 5: 1-4.
[23]  Pozdnyakov D, Shuchman R, Korosov A et al. Operational algorithm for the retrieval of water quality in the Great Lakes. Remote Sensing of Environment, 2005, 97(3): 352-370.
[24]  Rorslett B. Modelling of underwater light in freshwater lakes using survival and failure time analysis. Freshwater Biology, 1996, 35(1): 11-24.
[25]  Nellis MD, Harrington JA, Wu JP. Remote sensing of temporal and spatial variations in pool size, suspended sediment, turbidity, and Secchi depth in Tuttle Creek Reservoir, Kansas: 1993. Geomorphology, 1998, 21(3-4): 281-293.
[26]  Kloiber SM, Brezonik PL, Bauer ME. Application of Landsat imagery to regional-scale assessments of lake clarity. Water Research, 2002, 36(17): 4330-4340.
[27]  Islam MR, Yamaguchi Y, Ogawa K. Suspended sediment in the Ganges and Brahmaputra Rivers in Bangladesh: observation from TM and AVHRR data. Hydrological Processes, 2001, 15(3): 493-509.
[28]  Sipelgas L, Raudsepp U, Kouts T. Operational monitoring of suspended matter distribution using MODIS images and numerical modelling. Advances in Space Research, 2006, 38(10): 2182-2188.
[29]  Yan Z, Tang D. Changes in suspended sediments associated with 2004 Indian Ocean tsunami. Advances in Space Research, in Press, Corrected Proof.
[30]  Liu CD, He BY, Li MT et al. Quantitative modeling of suspended sediment in middle Changjiang River from MODIS. Chinese Geographical Science, 2006, 16(1): 79-82.
[31]  李云驹, 常庆瑞, 杨晓梅等. 长江口悬浮泥沙的 MODIS 影像遥感监测研究. 西北农林科技大学学报(自然科学版), 2005, 33(4): 117-121.
[32]  Liu W. Monitoring variation of water turbidity and related environmental factors in Lake Poyang National Nature Reserve, China. International Institute for Geo-information Science and Earth Observation (ITC): 54.
[33]  徐德龙, 熊 明, 张 晶. 鄱阳湖水文特性分析. 人民长江, 2001, 32(2): 21-27.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133