17 KTA 3102.1, Reactor Core Design for High-Temperature Gas-Cooled Reactor Part 1: Calculation of the Material Properties of Helium, 1978.
[2]
18 KTA 3102.2, Reactor Core Design of High-Temperature Gas-Cooled Reactors Part 2: Heat Transfer in Spherical Fuel Elements, 1983.
[3]
19 P. Zehner and E.U.Schlunder, Thermal conductivity of granular materials at moderate temperatures, Chem. Inngr. Tech., 42:933–941, 1970.
[4]
20 Hans D. Gougar, The Application of the PEBBED Code Suite to the PBMR-400 Coupled Code Benchmark, Idaho National Laboratory Idaho Falls, Idaho 83415, 2006.
[5]
21 B. Boer, D. Lathouwers, J. L. Kloosterman, T. H. J. J. Van Der Hagen, G. Strydom, Validation of the DALTON-THERMIX Code System with Transient Analyses of the HTR-10 and Application to the PBMR, Volume 170, Number 2, Pages 306-321, 2010.
[6]
22 Trevor Dudley, Werner Bouwer, Piet de Villiers, Zen Wang, The Thermal–Hydraulic model for the pebble bed modular reactor (PBMR) plant operator training simulator system. Nuclear Engineering and Design 238 (2008) 3102–3113.
[7]
23 B. Boer, J.L. Kloosterman, D. Lathouwers, T.H.J.J. van der Hagen, In-core fuel management optimization of pebble-bed reactors. Annals of Nuclear Energy 36 (2009) 1049–1058.
[8]
1 K. Petersen, Zur Sicherheitskonzeption des Hochtemperaturreaktors mit natiirlicher Warmeableitung aus dem Kern im Storfall, Jul-1972, October 1983 .
[9]
2 Struth, S. Thermix-Direkt: Ein Rechenprogramm zur instation?ren zweidimensionalen Simulation thermohydraulischer Transienten, FZ Jülich, Germany, 1995.
[10]
3 J.C. Cleveland, S.R. Greene, Application of THERMIX-KONVEK code to accident analyses of modular pebble bed high temperature reactors (HTRs) NUREG/CR-469 ORNL/TM-9905,1986.
[11]
4 H. Gerwin, W. Scherer, The Two-Dimensional Reactor Dynamics Programme TINTE. Part1: Basic Principles & Methods of Solution Jül-2167: TINTE Part: 1, 1987.
[12]
5 H. Gerwin, W. Scherer and E. Teuchert, The TINTE Modular Code System for Computational Simulation of Transient Processes in the Primary Circuit of a Pebble-Bed High-Temperature Gas-Cooled Reactor, Nucl. Sci. Eng, 103, 302-312 (1989).
[13]
6 Brian L. Smith, Assessment of CFD Codes Used in Nuclear Reactor Safety Simulations, Nuclear Engineering and Technology, Volume 42, Issue ,4, pp.339-364, 2010.
[14]
7 李林森,王侃,宋小明,CFD在核能系统分析中应用的最新进展,核动力工程,2009,5(增刊):28-33. LI Lin-sen, WANG Kan, SONG Xiao-ming, International Research Progress of CFD Application in Analysis of Nuclear Power System, Nuclear Power Engineering, 2009,5, 28-33.(in Chinese)
[15]
8 桂学文,蔡琦,陈玉清,基于CFD的反应堆局部三维流动模型与时空中子动力学模型耦合研究, 核科学与工程, 2010,3:216-222. GU I Xue-wen, CAI Qi, CHEN Yu-qing, Study on coupling of local three-dimension flow model based on CFD method and space- time neutron kinetics model, Chinese Journal of Nuclear Science and Engineering, 2010,3 :216-222. (in Chinese)
[16]
9 刘余,张虹,贾宝山,核反应堆热工水力多尺度耦合模拟初步研究,核动力工程,2010,(s1):11-15. LIU Yu, ZHANG Hong, JIA Bao-shan, Preliminary Research on Nuclear Reactor Thermal-Hydraulic Multi-scale Coupled Simulation, Nuclear Power Engineering, 2010,(s1):11-15.(in Chinese)
[17]
10 刘余,张虹,贾宝山,RELAP5与CFX程序耦合研究,原子能科学技术,2010,44(3):304-308. LIU Yu, ZHANG Hong, JIA Bao-shan, Research on Coupling Between RELAP5 and CFX Codes, Atomic Energy Science and Technology, 2010,44(3):304-308.(in Chinese)
[18]
11 S. Becker, E. Laurien, Three-dimensional numerical simulation of flow and heat transport in high-temperature nuclear reactors, Nuclear Engineering and Design 222 (2003) 189–201
[19]
12 Fluent 6.3 User’s Guide, Fluent Inc.
[20]
13 Fluent 6.3 UDF Manual, Fluent Inc.
[21]
14 Mulder. E, Teuchert. E, Plutonium Disposition in the PBMR-400 High Temperature Gas-Cooled Reactor, PHYS0R 2004.
[22]
15 Mulder. E, Core Basic Design Report for the PBMR Nuclear Power Plant Project.PBMR Report, Doc.No.02979-34.
[23]
16 KTA 3102.3, Reactor Core Design of High-Temperature Gas-Cooled Reactors Part 3: Loss of Pressure through Friction in Pebble Bed Cores,1981.